

WiSHABI

Wireless, Single Handed, Accelerometer-Based, USB-HID Compliant, PC Interface

Jadon Clews

B. Eng. Mechatronic Engineering Project Report

Department of Mechanical Engineering

Curtin University of Technology

2008

Jadon Clews
13 Bangalay Court

Halls Head WA 6210

October 31st, 2008

A/Prof Tilak T. Chandratilleke
Department of Mechanical Engineering
Curtin University of Technology
Kent Street
Bentley WA 6210

Dear Sir

I submit this report entitled “Wireless, Single-Handed, Accelerometer-Based,
USB-HID Compliant, PC Interface”, based on Mechatronic Project 491/493,
undertaken by me as part-requirement for the degree of B.Eng. in Mechatronic
Engineering.

Yours faithfully

Jadon Clews

Acknowledgements Jadon Clews

i

Acknowledgements

Dr Muhammad Ilyas Mazhar – For his supervisory style which allowed me the

flexibility to complete this project in a manner which best suited me whilst still

providing me with an easily approachable source of advice.

Dr Euan Lindsay – For his enthusiasm and teaching style throughout my university

education, which I found inspiring and which also made attending classes a much more

enjoyable experience.

Marcus Holliday – For proof-reading and providing advice in regards to this report and

for being genuinely interested in this project.

My Family – For their unwavering support and for feigning interest whenever I wanted

to discuss this project.

Abstract Jadon Clews

ii

Abstract

The recent decline in manufacturing costs of acceleration sensing devices known as

accelerometers, has lead to a proliferation of said devices within consumer electronics

(such as cameras, notebook computers and mobile phones). This project was

undertaken to demonstrate a practical application of such a device by utilising its ability

to sense static acceleration attributed to gravity. The following report describes the

design and construction of a system which enables comprehensive control of a PC, via a

wireless, hand-held device without the need for additional driver software. The system

consists of a receiver-unit which connects directly to a PC (utilising the USB protocol)

and a transmitter-unit which fits comfortably in the user’s hand. Two modes of

operation exist; mouse-mode and keyboard-mode. When operating in mouse-mode, the

device acts as a wireless mouse and the motion of the on-screen cursor corresponds to

the tilt-angles of the transmitter-unit. Keyboard-mode allows text-entry of the

alphanumerical character set by means of combined transmitter tilt-orientation and

button presses. The tilt-orientation of the transmitter-unit is detected by means of a tri-

axis accelerometer. The complete system is a working example of another use for this

versatile and increasingly affordable technology.

Nomenclature Jadon Clews

iii

Nomenclature

• 0x – Prefix used when representing hexadecimal (base sixteen) numerical values

(e.g. 0xFF is equal to decimal 255).

• AA – A standardised size use for describing battery cells.

• ADC – Acronym for Analogue to Digital Converter. Used to convert a voltage

level within a specific range to a digital value which can then be processed by a

digital system such as a microcontroller.

• ATmega – A subset of Atmel’s range of AVR microcontrollers.

• Atmel – A manufacturer which specialises in the production of microcontrollers.

• AVR – A range of microcontrollers manufactured by Atmel.

• Byte – An abbreviation for Binary Term. A standard storage measurement of

computer data consisting of 8 bits.

• Bit – An abbreviation of Binary Digit. A basic unit of information storage typically

represented by a value of either 1 or 0.

• g – Unit of measurement for acceleration where one ‘g’ is equal to the static

acceleration attributed to gravity (approximately 9.81m/s2).

• GUI – Acronym for Graphical User Interface. A computer operating system that is

based upon icons and visual relationships rather than text (e.g. Windows or Linux).

• GUI key – A key included on a typical keyboard which performs functionality

specific to the utilised operating system.

• HID – Acronym for Human Interface Device. A class of USB device (with specific

protocols) which includes peripherals such as mice and keyboards.

• I/O – Abbreviation for Input/Output. On a microcontroller, an I/O port is a set of

pins which can function as either digital inputs or outputs.

• IC – Acronym for Integrated Circuit. A tiny complex of electronic components and

their connections that is produced in or on a small slice of material, usually silicon.

• IDC – Acronym for Insulation-Displacement Connector. A connector that pierces

the insulation on a wire to make the connection, removing the need to strip the wire

before connecting. Also used to refer to the sockets which are compatible with

these connectors.

Nomenclature Jadon Clews

iv

• ISP – Acronym for In-System Programming. The ability for some microcontrollers,

and other programmable electronic ICs to be programmed whilst still installed

within a complete system.

• LED – Acronym for Light Emitting Diode. A semiconductor diode that emits light

when conducting current.

• MAX232 – A specialised IC that converts signals from an RS-232 serial port to

signals suitable for use in TTL compatible digital logic circuits.

• NiCd – Abbreviation for Nickel-Cadmium. A type of rechargeable battery.

• NiMH – Abbreviation for Nickel Metal-Hydride. A type of rechargeable battery.

• PC – Acronym for Personal Computer.

• PCB – Acronym for Printed Circuit Board. A flat board whose front contains slots

for ICs and other electronic components, and whose back is printed with electrically

conductive pathways to provide connections between the components.

• RF – Acronym for Radio Frequency. The area (or band) of the electromagnetic

spectrum where most radio communication takes place.

• RGB – Acronym for Red, Green, Blue. Refers to a type of LED which is capable of

emitting visible light in three distinct colours, or combinations thereof.

• RS-232 – A Widely recognized protocol standard for serial data interchange. Once

commonly utilised by PCs it is currently being superseded by alternative serial

communication protocols (such as USB).

• RX – Abbreviation for Receive or Receiver.

• TTL – Acronym for Transistor-Transistor Logic. Commonly used to describe a

class of integrated circuits which operate at discrete levels of 0 and +5 volts.

• TX – Abbreviation for Transmit or Transmitter.

• UART/USART – Acronyms for Universal Asynchronous Receiver/Transmitter and

Universal Synchronous/Asynchronous Receiver/Transmitter. Serial data processing

protocols commonly utilised by microcontrollers.

• WiSHABI – A partial acronym for the title of this project. Derived from Wireless,

Single-Handed, Accelerometer-Based Interface.

Table of Contents Jadon Clews

v

Table of Contents

1 Introduction ... 1

1.1 Project Objectives ... 2

1.1.1 Primary Objectives .. 2

1.1.2 Secondary Objectives .. 3

1.2 Project Progression .. 4

1.2.1 Detailed Functional Design ... 4

1.2.2 Hardware Selection and Initial Circuit Designs .. 4

1.2.3 Initial Circuit Construction ... 5

1.2.4 Basic Firmware Coding and Circuit Testing ... 5

1.2.5 Transmitter-Unit Final Construction ... 5

1.2.6 Advanced Firmware Coding ... 6

1.2.7 Receiver-Unit Final Construction ... 6

1.2.8 Firmware Refinement.. 6

1.3 Project Applications ... 6

2 Background Information .. 7

2.1 Measuring Tilt with an Accelerometer ... 7

2.2 Serial Communications .. 10

2.2.1 Serial Data Level Conversion ... 11

2.2.2 Wireless Serial Communications .. 12

2.3 USB Protocol – HID Compliance .. 16

2.3.1 USB Protocol .. 16

2.3.2 HID-Class .. 18

2.4 Information Sources ... 21

3 System Overview ... 22

Table of Contents Jadon Clews

vi

3.1 Physical Layouts ... 22

3.1.1 Transmitter-Unit Layout ... 23

3.1.2 Receiver-Unit Layout .. 24

3.2 Intended Usage ... 26

3.2.1 Modes of Operation... 26

3.2.2 Tilt-Orientation ... 27

3.2.3 Operating in Mouse-Mode .. 30

3.2.4 Operating in Keyboard-Mode ... 31

3.3 Data Flow .. 33

3.4 Wireless Data Packets .. 35

3.5 USB Implementation .. 36

3.6 HID Report Descriptor .. 37

3.7 Using a Serial Level Converter for Debugging .. 39

4 Transmitter-Unit ... 40

4.1 Transmitter-Unit Electronics .. 40

4.1.1 Transmitter Microcontroller .. 41

4.1.2 Serial Interface .. 42

4.1.3 TX Module .. 42

4.1.4 Accelerometer ... 43

4.1.5 Buttons .. 44

4.1.6 Power-Module ... 45

4.2 Transmitter-Unit Physical Assembly .. 47

4.2.1 Transmitter Enclosure ... 47

4.2.2 Layout of Transmitter Components and Circuit Boards 49

4.3 Transmitter-Unit Firmware .. 52

Table of Contents Jadon Clews

vii

4.3.1 Serial Interface .. 53

4.3.2 ADC (Analogue to Digital Converter) .. 54

4.3.3 Button Detection ... 55

5 Receiver-Unit ... 56

5.1 Receiver-Unit Electronics .. 56

5.1.1 Receiver Microcontroller .. 57

5.1.2 Serial Interface .. 58

5.1.3 RX Module .. 58

5.1.4 USB Interface Hardware ... 58

5.1.5 LEDs ... 59

5.2 Receiver-Unit Physical Assembly .. 60

5.2.1 Receiver Enclosure.. 60

5.2.2 3x3 LED-Grid Enclosure .. 62

5.2.3 Layout of Receiver Components and Circuit Board 63

5.3 Receiver-Unit Firmware .. 65

5.3.1 Serial Interface .. 67

5.3.2 USB Interface Firmware Driver .. 69

5.3.3 LED Control .. 71

5.3.4 Determining Tilt-Sector .. 72

5.3.5 No-Signal Timeout Detection ... 73

5.3.6 Mouse-Mode ... 73

5.3.7 Keyboard-Mode .. 75

6 Conclusions .. 78

6.1 Unanticipated Problems ... 78

6.1.1 Assembling Transmitter Components within a Small Enclosure 78

Table of Contents Jadon Clews

viii

6.1.2 Combining Keyboard and Mouse Functionality into a Single Device 79

6.2 Project Limitations ... 80

6.2.1 Typing Speed .. 80

6.2.2 Battery Life ... 80

6.2.3 RF Noise ... 81

6.2.4 Cursor Positioning ... 82

6.3 Possible Improvements .. 83

6.3.1 Software Support ... 83

6.3.2 Receiver-Unit Miniaturisation .. 83

6.3.3 Caps Lock Indicator .. 83

6.3.4 Docking Station ... 84

7 References .. 85

Appendix A – Objective Development USB Driver Information 87

Appendix B – Transmitter-Unit Circuit Diagram and Component List 89

Appendix C – Receiver-Unit Circuit Diagram and Component List 91

Appendix D – Main Component Details ... 93

Appendix E – Serial Line Level Conversion Module ... 94

Appendix F – 10-Pin IDC Connector Pin Identification ... 95

Appendix G – Attached CD Contents ... 96

List of Figures Jadon Clews

ix

List of Figures

Figure 2-1: Accelerometer Output with respect to Gravitational Orientation 8

Figure 2-2: Derivation of Tilt Angle from Accelerometer Output 8

Figure 2-3: Converting Serial Line Levels.. 11

Figure 2-4: Directly Connected Serial Communication ... 12

Figure 2-5: Wireless, Unauthenticated Serial Communication....................................... 12

Figure 2-6: Wireless, Authenticated Serial Communication .. 13

Figure 2-7: Standard USB Connection Receptacles ... 16

Figure 3-1: Transmitter-Unit Layout and Dimensions.. 23

Figure 3-2: Receiver-Unit Layout and Dimensions .. 24

Figure 3-3: 3x3 LED-Grid Layout and Dimensions ... 25

Figure 3-4: Tilt-Orientation Sector Designations ... 27

Figure 3-5: Adjusting Tilt-Orientation along the Y-Axis ... 27

Figure 3-6: Adjusting Tilt-Orientation along the X-Axis ... 28

Figure 3-7: 3x3 LED-Grid Display with corresponding Tilt-Orientation Sector 29

Figure 3-8: Mouse-Mode Button Assignments ... 30

Figure 3-9: Cursor Motion according to Tilt-Orientation Sector 30

Figure 3-10: Keyboard-Mode Button Assignments .. 31

Figure 3-11: Alphanumeric Character Selection according to Tilt-Orientation Sector .. 31

Figure 3-12: Data-Flow throughout the System ... 34

Figure 4-1: Transmitter-Unit Circuit Schematic ... 40

Figure 4-2: Cordless Screwdriver which became the Transmitter-Unit Enclosure 47

Figure 4-3: Assembled Transmitter-Unit with Externally Accessible ISP Header......... 48

Figure 4-4: Fully Enclosed Transmitter-Unit .. 48

Figure 4-5: Arrangement of Transmitter-Unit's Internal Components 50

Figure 4-6: Transmitter-Unit Internal Component Layout ... 51

Figure 4-7: Transmitter Firmware Flowchart Representation .. 52

Figure 5-1: Receiver-Unit Circuit Schematic ... 56

Figure 5-2: Fully Enclosed Receiver-Unit .. 61

Figure 5-3: Fully Enclosed 3x3 LED-Grid Unit ... 62

List of Figures Jadon Clews

x

Figure 5-4: Receiver-Unit Circuit Board Component Layout .. 63

Figure 5-5: Receiver-Unit Circuit Board .. 64

Figure 5-6: Receiver-Unit Circuit Board with Internal Ribbon Cable Connections 65

Figure 5-7: Receiver-Firmware Flowchart Representation... 66

Figure 5-8: USART Receive Interrupt Subroutine Flowchart Representation 68

Figure 5-9: Main Mouse-Mode Loop Flowchart Representation 74

Figure 5-10: Main Keyboard-Mode Loop Flowchart Representation 76

Figure 6-1: Improved Tilt-Sector Designations .. 82

Figure B-1: Transmitter-Unit Circuit Diagram ... 89

Figure C-1: Receiver-Unit Circuit Diagram ... 91

Figure E-1: Serial Line Level Converter Circuit Diagram.. 94

Figure F-1: 10-Pin IDC Connector Pin Numbers ... 95

List of Tables Jadon Clews

xi

List of Tables

Table 2-1: Byte Representation of Acceleration Vectors (8-bit resolution, ±3g) 9

Table 2-2: Example Data Packet Format .. 14

Table 2-3: Example HID Report Descriptor (Keyboard) .. 19

Table 2-4: Example HID Report Descriptor (Keyboard/Mouse Combination) 20

Table 3-1: LED Colour and Corresponding Modes of Operation................................... 26

Table 3-2: Utilised Data Packet Format .. 35

Table 3-3: Data Represented within Packets .. 35

Table 3-4: Keyboard Input Report Format (for HID) ... 37

Table 3-5: Keyboard Output Report Format (for HID) .. 38

Table 3-6: Mouse Input Report Format (for HID) .. 38

Table 4-1: Transmitter-Unit Component Supply Voltage Requirements 46

Table 4-2: Button Status Data Byte Format .. 55

Table 5-1: Microcontroller I/O Pin and the Corresponding Connected LED 59

Table 5-2: LED Control Byte and Connected Hardware Pins .. 71

Table B-1: Transmitter-Unit Component List... 90

Table C-1: Receiver-Unit Component List ... 92

Table D-1: Main Component Manufacturers, Supplies and Cost 93

Table D-2: Component Supplier Websites ... 93

Table E-1: Serial Line Level Conversion Unit Component List 94

Table F-1: 10-Pin IDC Connection Pin Assignments ... 95

Table G-1: CD Directory Content ... 96

1 Introduction Jadon Clews

1

1 Introduction

The project detailed by this report involved the design and development of a prototype

PC interface device. The device is intended to provide the user a means of both mouse

and keyboard-like control of a PC from a single, wireless, hand-held unit.

This report will provide information pertaining to the design and construction of the

device as well as how it actually operates. Additionally, the report will explain how the

device is intended to be used, including its capabilities and limitations.

The report is broken down into eight main sections, each of which is described in the

following list:

1. Introduction – An overview of the content of this report and the project it describes

including objectives and the progression of the project development.

2. Background Information – Underlying information required to develop an

understanding of how the device operates. Also includes a description of the major

sources of data utilised for project development.

3. System Overview – A description of how the device is intended to be used as well

as some key concepts involving how it operates.

4. Transmitter-Unit – Details pertaining specifically to the design and construction of

the transmitter-unit’s hardware and firmware.

5. Receiver-Unit – Details pertaining specifically to the design and construction of the

receiver-unit’s hardware and firmware.

6. Conclusions – An overview of the results of the project including its limitations and

some proposed improvements for the system.

7. References – A list of all the sources used in development of both the project and

this report.

8. Appendices – Supplementary data and information.

1 Introduction Jadon Clews

2

1.1 Project Objectives

The objectives initially desired for the completed system can be broken into two parts.

The primary objectives are those which had to be met in order for the project to be

considered a success. Secondary objectives are those that were desired, but not

required.

1.1.1 Primary Objectives

It was deemed necessary that the completed, functional system should be:

P1 Wireless – The controller should not be tethered by any data or power cables. This

means a wireless transmitter/receiver combination had to be implemented and the

transmitter-unit had to be capable of operating from batteries.

P2 Operable with a single hand – The transmitter-unit had to be small enough to fit in a

person’s hand and any buttons mounted on the transmitter-unit had to be easily

accessible by the user’s fingers.

P3 Simple to install – The receiver should be connected to the PC via a commonly used

interface.

P4 Simple to use – The system should require minimal instructions for setup and

operation.

P5 Capable of providing an indication (visual or audible) of the current operating mode

(mouse or keyboard).

P6 Compatible with all major PC operating systems.

Note: The primary objectives are numbered for reference purposes only. They all share

equal, mandatory priority.

1 Introduction Jadon Clews

3

1.1.2 Secondary Objectives

It was deemed ideal that the completed, functional transmitter-unit should be:

S1 Capable of transmitting large distances to maximise operational range.

S2 Rechargeable (without replacing batteries) and remain operational whilst being

recharged.

S3 Operate for a long time on a single charge to minimise required recharging

frequency.

S4 Comfortable to use (no sharp edges).

S5 Easily firmware upgradable.

S6 Aesthetically pleasing.

It was also deemed ideal that the completed, functional receiver-unit should be:

S7 Usable without requiring any additional software to be installed on the

connected PC.

S8 Capable of receiving data from large distances to maximise operational range.

S9 Capable of drawing the required power from the connected PC.

S10 Capable of providing a visual indication of the tilt-orientation of the transmitter-

unit.

S11 Easily firmware upgradable.

S12 Aesthetically pleasing.

Note: Like the primary objectives, numbering of the secondary objectives is for

reference purposes only.

1 Introduction Jadon Clews

4

1.2 Project Progression

Once the objectives had been defined, design and construction of the system was

undertaken. The following sections describe the steps taken to achieve the desired

objectives. Although denoted in a linear format, some overlap existed from step to step.

1.2.1 Detailed Functional Design

The first step was to determine the specific details pertaining to how the completed

system should operate. This included the following details:

• Wireless data transmission and reception method – 433.92Mz Frequency.

• PC interface method – USB.

• Accelerometer interface method – Serial.

• Number of buttons required on the transmitter-unit – 5.

• Number of outputs required on the receiver for LED indicators – 12.

The selection of specific hardware components (in particular the microcontrollers)

depended predominantly on the design decisions defined here.

1.2.2 Hardware Selection and Initial Circuit Designs

The next step was the selection of the primary electronic devices with which to build the

system. The selected components follow:

• Microcontroller (x2) – Atmel ATmega8 AVR.

• Wireless TX/RX Modules – 433.92MHz, 4800baud, Transmitter and Receiver-

Modules.

• Accelerometer – Analog Devices ADXL330 3-Axis ±3g Accelerometer.

• Power-Module – 3-9Volt DC-DC Converter.

With the key components selected, both the transmitter and receiver circuits were

designed.

1 Introduction Jadon Clews

5

1.2.3 Initial Circuit Construction

Once the required components were obtained, the circuits were built. Initially the

components were assembled on two separate breadboards (one each for the transmitter

and receiver circuits) as this would allow for any refinements or modifications to be

undertaken easily.

1.2.4 Basic Firmware Coding and Circuit Testing

The next step involved writing the basic code functions to be used by the final system.

These functions also provided a means of testing certain components within the circuits.

For example the functions involving basic USB communications were implemented and

tested to prove that the USB related components of the receiver system were connected

appropriately. The key underlying functions written at this stage included those

required for:

• Serial communications.

• Data packet encoding/decoding.

• USB communications.

• Analogue to Digital (ADC) conversion (for Accelerometer)

• I/O port manipulation for LED outputs

• I/O port manipulation for button inputs

1.2.5 Transmitter-Unit Final Construction

With the ability to decode readings from the accelerometer, the next step required the

selection of a suitable enclosure for the transmitter and installation of the fully

constructed transmitter circuit. Selecting and testing the suitability of a transmitter

enclosure was necessary at this stage so that the transmitter-unit’s tilt-orientation

detection subroutine (see section 5.3.4 Determining Tilt-Sector) could be implemented

and tested. This in turn would allow mouse and keyboard-modes to be properly tested

with calibrated settings.

1 Introduction Jadon Clews

6

1.2.6 Advanced Firmware Coding

Once the transmitter-unit was fully constructed, calibration of the accelerometer was

confirmed and the main functionality of the system (mouse and keyboard-modes) was

implemented. These subroutines formed part of the receiver-unit’s firmware.

1.2.7 Receiver-Unit Final Construction

At this stage, the system was operating in such a way that it met all of the primary

objectives for the project. Next, the receiver-unit’s circuit was transferred from the

breadboard to a more permanent circuit board which was then installed into a suitable

enclosure. This point saw the completion of all the hardware required for the project.

1.2.8 Firmware Refinement

The final stage involved refinement of the existing firmware. This included testing, bug

removal and the implementation of additional functionality to meet the remaining

secondary objectives. After this stage the project was considered fully operational and

focus was directed to completing the accompanying documentation.

1.3 Project Applications

The prototype developed as a result of this project provides a means of interfacing with

a PC wirelessly using only one hand and without requiring a flat surface such as a desk

or podium. Such functionality could be useful in the following example scenarios:

• When giving a presentation such as a lecture.

• When PC control is necessary in the field with no immediately accessible flat

surfaces for a regular mouse or keyboard.

• When operating a home entertainment PC from an armchair or a bed.

Additionally, the receiver-unit built as a part of this project provides a sound hardware

platform for developing USB devices with wireless data reception capability and easily

accessible I/O ports.

The completed project is also useful for demonstrating a less intuitive application for an

accelerometer.

2 Background Information Jadon Clews

7

2 Background Information

To better understand how the complete system works, a few key points must be

explained:

1. How an accelerometer can be used to determine tilt-orientation.

2. The formatting necessary to wirelessly transmit a data packet.

3. Basics details of the USB Human Interface Device (HID) protocol

The following sections will provide an understanding of these concepts as well as

information regarding how the majority of the data utilised for this project was

obtained.

2.1 Measuring Tilt with an Accelerometer

Most modern accelerometers are simple “micro electro-mechanical systems” (MEMS)

consisting of cantilever beam and proof mass structures for each measured axis. Forces

acting on the structure cause a displacement along the axis which leads to variations in a

measured capacitance. There is also a newer technology that is being increasingly

implemented. In this case, accelerometers use a heated gas bubble combined with

thermal sensors. When the accelerometer is tilted or accelerated, the sensors pick up the

location of the gas bubble (similar to the air bubble in a spirit level often seen on

construction sites). In either case, the accelerometer outputs a signal which represents a

value proportional to the acceleration experienced along the relative axis.

2 Background Information Jadon Clews

8

Figure 2-1: Accelerometer Output with respect to Gravitational Orientation

Figure 2-2: Derivation of Tilt Angle from Accelerometer Output

If an accelerometer is stationary and has an axis parallel to the direction of gravity, the

output from the device for that axis would represent acceleration with a magnitude of

1g. If the same axis was aligned perpendicular to the direction of gravity, the output

would be indicative of acceleration with a magnitude of 0.

If the accelerometer begins in a resting position oriented such that its Z-axis output

equates to 1g, and it is then rotated on an axis perpendicular to Z, the new Z-axis output

can be calculated as a function of the angle by which the device is rotated.

Thus the tilt angle can be calculated from the formula:

 Equation 2-1

Z-Axis

Gravity

ZOUT = 1g ZOUT = -1g ZOUT = 0g

Z-Axis

Z-Axis

Parallel to Earth’s Surface

Gravity Gravity

�

ZOUT = 1g ZOUT = 1g/sin

Z-Axis

Z-Axis

2 Background Information Jadon Clews

9

An accelerometer will provide the output signal in one of two forms (some devices

provide the option of both):

1. Digital – The signal is a stream of digital bits intended to be read and decoded by

means of a serial receiver (a common microcontroller peripheral). The decoded data

will consist of a data byte representing the acceleration vector.

2. Analogue – The signal is a voltage level that will vary between a minimum (Usually

0 volts) and a maximum (usually the device source voltage – 3.3 volts). To be

useful, this analogue signal must be converted to a digital signal via an “Analogue to

Digital Converter” (ADC). Many microcontrollers have ADC capabilities which are

used to convert the signal to a useable data byte representing the acceleration vector.

In both cases, the acceleration vector is eventually represented in the form of a data byte

or bytes. Typically this is an 8-bit value but other resolutions are possible. In the case

of an 8-bit representation of an acceleration vector, a byte value of 0 equates to the

minimum measurable acceleration value, while a byte value of 255 equates to the

maximum measurable acceleration. Thus for a ±3g accelerometer, the 8-bit

representation of the axis outputs equates to an acceleration value as defined in the

following table:

Byte Value (Decimal) Byte Value (Hexadecimal) Acceleration

0 0x00 -3g

42 0x2A -2g

85 0x55 -1g

128 0x80 0g

169 0xA9 1g

212 0xD4 2g

255 0xFF 3g

Table 2-1: Byte Representation of Acceleration Vectors (8-bit resolution, ±3g)

2 Background Information Jadon Clews

10

In this example, an increment in the byte value (x) equates to an approximate increase

of 23.4x10-3g. As such, the acceleration value (A) can be calculated with the following

formula:

 Equation 2-2

This equation would vary depending on the resolution of the measured signal and the

maximum magnitude of acceleration that the accelerometer is capable of sensing.

When using an accelerometer to determine tilt angle, only the values representing

acceleration vectors of ±1g are useful because a magnitude of 1 is the maximum

acceleration possible under the sole influence of gravity. So for a ±3g accelerometer, a

data range of about 0x55 to 0xA9 is used to derive the angle of tilt for the corresponding

axis. The value measured here combined with equations 2-1 and 2-2 provide the means

by which a microcontroller can determine the tilt-orientation of an accelerometer and

whatever it is attached to.

2.2 Serial Communications

Data transfer between two directly connected electronic devices is often facilitated by

means of some variety of serial communications. A few commonly used protocols exist

for serial communications implemented by microcontrollers. Some examples include:

• UART/USART – Universal Asynchronous Receiver/Transmitter or Universal

Asynchronous/Synchronous Receiver/Transmitter.

• SPI – Serial Peripheral Interface.

• I2C – Inter-Integrated Circuit (TWI – Two Wire Interface is a variation of I2C).

• CAN-bus – Controller-area Network bus.

The different protocols have various advantages and disadvantages, but they all operate

by means of transmitting and receiving a series of bits which are received and arranged

into data bytes.

2 Background Information Jadon Clews

11

Figure 2-3: Converting Serial Line Levels

2.2.1 Serial Data Level Conversion

Sometimes it is required that devices which employ different serial communication

protocols be capable of communicating with each other. For example an application

might require a microcontroller’s USART communicating with the serial port of a PC.

In this case the two protocols have the same data structure but the USART employs

TTL-compatible logic levels while the PC’s serial port utilises logic levels as specified

by the RS-232 standard. The two differing logic levels are incompatible, so for the

devices to successfully communicate, a third device must be employed to act as a bridge

and convert the levels in both directions.

The level converter often takes the form of a specifically designed IC. A suitable device

for this example would be the MAX232 IC which, when combined with a few

additional components, converts TTL-compatible levels to RS-232 and vice-versa.

Level

Converter

 USART RS-232

Logic 0 0V +5 to +15V

Logic 1 +5V -5 to -15V

PC

RS-232 RX

TTL RX

TTL TX

Micro-

controller RS-232 TX
PC

2 Background Information Jadon Clews

12

Figure 2-4: Directly Connected Serial Communication

Figure 2-5: Wireless, Unauthenticated Serial Communication

2.2.2 Wireless Serial Communications

Serial communication between two directly connected devices is relatively

straightforward. The devices can send and receive the bare minimum data bytes with

little or no chance of said data being corrupted or irrelevant data being unintentionally

received.

If however, a device was set up to receive serial data “over-the-air”, there becomes a

dramatic increase in the likelihood of data unintentionally being received from an

unrelated, third-party device with wireless transmission capabilities.

Data Transmitter

Data Transmitter Data Receiver

Direct Serial Data Transmission Data Received

and Accepted

Data

Processed
Data Byte

Unintended Data Byte

Unintended Data Byte

Data Receiver

Data

Processed

ERROR
Data Received

and Accepted

Data Received

and Accepted

Data Received

and Accepted

Wireless Serial Data Transmission

Wireless Serial Data Transmission

Wireless Serial Data Transmission
Data Byte

2 Background Information Jadon Clews

13

Figure 2-6: Wireless, Authenticated Serial Communication

Thus some kind of authentication protocol must be incorporated into the transmitted

data so that the receiver can reject unauthenticated transmissions from other wireless

sources (and also protect against random noise in the relevant frequency range). This is

referred to as encapsulating the data within a “data packet”. The packet contains the

actual data byte/s as well as some additional bytes included for authentication and

identification purposes.

With a defined packet structure in place, the receiver has a means of authenticating data

such that only the bytes actually intended for the receiver will be accepted and

processed. The rules applicable to a particular packet structure can vary greatly but this

is inconsequential provided both the transmitter and receiver follow the same protocol.

Data Receiver
Data Authentication

Data Transmitter

Data Packet

Data

Byte

Unintended Data Byte

Unintended Data Byte

Wireless Serial Data Transmission

Wireless Serial Data Transmission

Wireless Serial Data Transmission

Data

Processed

OK

Data Received

but Rejected

Data Received

but Rejected

Data Received

and Accepted

2 Background Information Jadon Clews

14

Typical data packets often contain data bytes to indicate a variety of information

depending on the application. Such bytes could represent various data. Examples of

data contained within a packet include (but are not restricted to):

• Beginning of the transmission.

• Address of sender (if multiple transmitters exist).

• Address of intended recipient (if multiple receivers exist).

• Number of data bytes within the packet.

• Beginning of actual data bytes.

• End of actual data bytes.

• Checksum (calculated value that is used to check for errors in the received data).

• End of transmission.

An example system may require basic, one-way, wireless communication between two

microcontrollers. No addressing is required and no form of error-checking is deemed

necessary. The number of data bytes is always the same. The following data packet

format could be used:

Byte Value Meaning

Byte 1 0x01 SOH (Start of Header)

Byte 2 0x02 STX (Start of Text)

Byte 3 0xXX 1st Data Byte

Byte 4 0xXX 2nd Data Byte

...

Byte n-3 0xXX 2nd Last Data Byte

Byte n-2 0xXX Last Data Byte

Byte n-1 0x03 ETX (End of Text)

Byte n 0x04 EOT (End of Transmission)

Table 2-2: Example Data Packet Format

2 Background Information Jadon Clews

15

In this case, to receive and authenticate the data, the receiver would look first for the

SOH and STX bytes in succession. Until these bytes are received, all other bytes are

rejected. In the event that SOH and STX are received, the receiver then expects the

actual data. After the final data byte the receiver expects an ETX byte followed by

EOT. These final two bytes confirm and authenticate the data transmission before the

receiver returns to waiting for an SOH byte.

This is just one of many possible data packet structures and processing procedures.

Additional data can be incorporated into the packet to provide stronger authentication

requirements, additional information or more efficient error-checking capabilities.

If there is only a small number of actual data bytes within the packet, incorporating

additional bytes into the packet structure can have an adverse effect on the system. For

example, a packet with a single SOH byte followed by a single data byte has half the

size of a packet containing SOH, STX, data and EOT. The smaller packet can be

processed in half the time required for the larger packet.

The structure of the data packet depends on the requirements of the application and the

environment it is intended to be used in (i.e. an area with a lot of RF noise may require

additional authentication rules). The specific details of wireless data transmission

including the implemented packet format relevant to this project are detailed later in

section 3.4 Wireless Data Packets.

2 Background Information Jadon Clews

16

2.3 USB Protocol – HID Compliance

The Universal Serial Bus (USB) is a serial communications protocol commonly used to

interface external devices with a host (usually a PC). Human Interface Device (HID) is

a class of USB device with its own specific protocols. The HID class exists as a

standard for USB keyboards, mice, joysticks or other interface devices that transfer

blocks of information to and/or from the host at moderate rates.

USB specifications (including class protocols) are defined by the USB Implementers

Forum (USB-IF), an industry standards body incorporating a number of companies

from the computer and electronics industries (www.usb.org/).

The following sections contain relevant information pertaining to the general

implementation of the USB protocol and the more specific HID-class.

2.3.1 USB Protocol

For the user, a USB device is simple to install and set-up. The price of being user-

friendly is greater complexity for the developers tasked with designing and

programming the USB device.

There are a few types of physical connectors commonly used with USB devices.

Typically (and as defined by the USB specification) the “server” device (usually a PC)

makes use of the Standard-A type connection while the “client” device utilises one of

the other standard connection types.

Figure 2-7: Standard USB Connection Receptacles

5 4 3 2 1 5 4 3 2 1

5 4 3 2 1 5 4 3 2 1

4 3

2 1

2 3 4 1

Micro-B

Mini-B

Standard-A Standard-B

Micro-A

Mini-A

2 Background Information Jadon Clews

17

Important features of the USB protocol include:

• Many peripherals (up to 127) can be connected simultaneously on a single “bus”.

• Bi-directional communication is possible (although, in many cases, only uni-

directional communication from the device to the PC is required).

• Devices utilising the protocol are “hot-swappable” which means they can be

connected and disconnected without the need to restart the PC.

• Power can be provided for low-consumption devices via the USB connection, so no

external power supply is required.

• Having a low number of required electrical contacts (4 or 5 depending on the

connector) means that the USB cable takes up very little space.

• Standardised physical connectors are keyed which ensures that connections are

made easily with no chance of contacts being incorrectly shorted.

Although the USB protocol is considered to be complex when compared with other

protocols, it can still be implemented with relative ease into device designs by one of

three methods:

1. Serial to USB converter – Standard TTL level serial communications from a

microcontroller are often converted to the RS-232 serial standard (implemented on

many PCs) by means of a specially designed IC (see section 2.2.1 Serial Data Level

Conversion). In the event that a PC does not have an RS-232 serial port, users have

the option of purchasing a “Serial to USB converter”. This is a device which

connects to one of the PCs USB ports and then behaves as a regular RS-232 serial

port. This option has the advantage of simplifying the device design as the USB

protocols are handled by an external IC. However the device will be restricted in

the same way as a regular serial device.

2. Microcontroller with internal USB peripheral – Some of the more recently available

microcontrollers have a hardware implementation of the low level USB protocol

operations as one of their inherent features. Implementing such a microcontroller in

the design of a USB compliant device would minimise the additional hardware and

firmware required and still have the full performance capability of USB. Currently

2 Background Information Jadon Clews

18

however, such microcontrollers are more expensive and less available than similar

devices without the USB feature.

3. Microcontroller with firmware implementation of USB – The USB protocol can be

implemented using regular I/O pins of a microcontroller via the use of complex

firmware. Using a firmware USB “driver” has the advantage of being applicable to

a wider range of available microcontrollers and thus providing more hardware

options. The disadvantages include a reduction in available memory space (required

by the USB driver), plus creating the driver is likely to be arduous and possibly not

worth the benefits. In some cases it may be prudent to utilise a pre-written driver

supplied by a third party and modified to suit the requirements of the new design.

Information pertaining to the implementation of USB from hardware and firmware

perspectives as applicable to this project can be found in sections 5.1.4 USB Interface

Hardware and 5.3.2 USB Interface Firmware Driver respectively.

2.3.2 HID-Class

Specifications exist for a number of types of USB peripherals or “classes”. Some of the

more common classes include:

• Hub (used to connect multiple devices to the same bus).

• Communications Device (Telephones, modems etc).

• Mass Storage (CD-ROM drives, hard disk drives, USB flash drives etc).

• Power Device (control for power conservation or uninterruptable power supplies).

• Printer.

• HID – Human Interface Device (keyboard, mouse, joystick etc.).

The final class in the list (HID-class) is commonly used for USB keyboards, mice and

joysticks (although it can be used for other devices as well). The advantage of having a

standardised class is the need for only a single driver in order for any operating system

to work with any device compliant with the protocols of the relevant class. In the case

of HID devices, all recent versions of the major operating systems are pre-loaded with

the required driver. This means the user can simply plug in their HID-compliant device

and begin using it with no additional software installation required (as per objective S7).

2 Background Information Jadon Clews

19

The data exchanged between the device and PC resides within structures called reports.

The firmware of the device must be configured to support the HID report format which

is flexible and can handle most types of data. A single report can contain up to 255

bytes.

The format of the reports is defined by an array of values known as the report

descriptor. The report descriptor of a device is sent to the host when the device is first

connected so that the host can make sense of the data being received (inputs) and be

aware of the format of any data which must be regularly sent to the device (outputs).

For example, if the device is a mouse, the reports will contain data pertaining to the

status of the mouse buttons and any changes in position of the mouse cursor. This

means the report descriptor will contain values indicating which data bytes in the report

represent a left-click, which data represents horizontal cursor motion etc.

The following table is an example of a report format described by a report descriptor

which could be used for a USB keyboard.

Byte # Byte Data Data Description

Byte 1 Modifier Status Each bit within this byte represents the status of a

keyboard modifier (Ctrl, Alt, Shift etc.)

Byte 2 Keystroke 1 These three bytes represent regular keyboard

keystrokes. In this example up to three simultaneous

keystrokes (plus modifiers) can be sent to the PC

simultaneously.

Byte 3 Keystroke 2

Byte 4 Keystroke 3

Byte 5 LED Status Each bit in this byte represents the status of a

keyboard LED (Caps Lock, Num Lock etc). This

byte would actually be described in the report

descriptor as an output which means it would be sent

from host to device, unlike the previous bytes.

Table 2-3: Example HID Report Descriptor (Keyboard)

2 Background Information Jadon Clews

20

The flexibility of a HID device lies in the ability to define a report descriptor as one sees

fit. This means a device could utilise a report format which indicates any combination

of standard keyboard, mouse or joystick controls, or a subset thereof. The following

table represents the HID report format defined by the HID report descriptor for a simple

keyboard/mouse combination device.

Byte # Byte Data Data Description

Byte 1 Modifier Status Each bit within this byte represents the status of a

keyboard modifier (Ctrl, Alt, Shift etc.)

Byte 2 Keystroke This byte represents a regular keyboard keystroke.

In this example only one keyboard keystroke (plus

modifiers) can be sent simultaneously.

Byte 3 Mouse Button Status The three least significant bits of this byte each

represent the status of a mouse button (left, right and

centre click). The remainder of the byte is padded

with zeros.

Byte 4 Cursor Delta X This byte will be a value (-127 to 127) representing

the change in position (in pixels) of the on-screen

mouse cursor in the horizontal direction.

Byte 5 Cursor Delta Y This byte will be a value (-127 to 127) representing

the change in position (in pixels) of the on-screen

mouse cursor in the vertical direction.

Table 2-4: Example HID Report Descriptor (Keyboard/Mouse Combination)

There are two technical documents essential for working with HID-class devices. They

are Device Class Definition for Human Interface Devices and HID Usage Tables. Both

documents were created by members of the USB Device Working Group which is

affiliated with the previously mentioned USB-IF. The documents are available at

http://www.usb.org/developers/hidpage/ and are also included on the CD accompanying

this document (see Appendix G).

2 Background Information Jadon Clews

21

2.4 Information Sources

Two websites proved to be invaluable sources of data pertaining to this project. Each

contained many projects (usually submitted by hobbyists) which revolved around

different implementations of AVR microcontrollers. Some of these projects utilised

hardware and firmware implementations that were similar to the requirements of this

project, thus providing already tested and documented data which could be modified

and combined to suit the requirements of this application.

Additionally, the two websites included forums by which hobbyists could communicate

to share or request information or help regarding projects. These forums also proved

invaluable sources of useful information.

The two websites were:

1. AVR Freaks – Includes a large number of user-submitted projects and a well

established forum all which revolve around implementations of AVR

microcontrollers. www.avrfreaks.net/

2. Objective Development AVR-USB – Includes projects and a forum which revolve

around the implementation of their firmware USB driver in AVR microcontrollers.

www.obdev.at/products/avrusb/index.html

Specific projects utilised as data sources are listed in section 7 References, along with

the other sources of information utilised for this project. Additionally, the referenced

projects are included on the attached CD (see Appendix G).

3 System Overview Jadon Clews

22

3 System Overview

The complete interface consists of two primary sub-systems; the transmitter-unit and the

receiver-unit. The user manipulates the transmitter by hand and relevant data is sent

wirelessly. This data is received by the receiver-unit which is connected to a PC’s USB

port. Both systems utilise a microcontroller for data input, processing and output. Data

is transferred from the transmitter-unit to the receiver-unit in the form of data packets

via the use of wireless transmitter and receiver-modules.

3.1 Physical Layouts

The following two sections provide details pertaining to how both the transmitter and

receiver-units were physically laid out. Diagrams also indicate the dimensions of the

units.

3 System Overview Jadon Clews

23

3.1.1 Transmitter-Unit Layout

The transmitter-unit is small enough to be operated within a user’s hand. The shape of

the unit was intended to be comfortable to hold whilst providing thumb access to three

buttons on the top (A, B and C) and index-finger access to another two buttons on the

bottom (D and E). At the end of the unit (opposite to the buttons) is a jack for a DC

plug-pack which provides power to re-charge the internal batteries.

Top Bottom Side

120mm

50mm 50mm 60mm

A

B C

D

E

DC Jack

Figure 3-1: Transmitter-Unit Layout and Dimensions

3 System Overview Jadon Clews

24

3.1.2 Receiver-Unit Layout

The receiver-unit consists of an aluminium enclosure with a USB standard-A, female

receptacle at one end. The other end provides access to three 10-pin, male IDC

connectors. Mounted on the top of the unit are a single tri-colour (RGB) LED and a

quarter-wave whip antenna.

160mm

80mm

125mm

45mm

Antenna

IDC

Connectors

Tri-Colour

LED

USB

Connector

Figure 3-2: Receiver-Unit Layout and Dimensions

3 System Overview Jadon Clews

25

In addition to the main receiver-unit is a small external peripheral containing a 3x3 grid

of LEDs. These LEDs connect to the microcontroller’s data I/O pins via the centre 10-

pin IDC connector on the main receiver-unit. The purpose of this 3x3 LED-grid module

is explained in the section 3.2.2 Tilt-Orientation.

80mm

35mm 12mm

Front Side

1 2 3

4 5 6

7 8 9

Figure 3-3: 3x3 LED-Grid Layout and Dimensions

3 System Overview Jadon Clews

26

3.2 Intended Usage

The transmitter-unit will operate continuously provided the batteries have charge and/or

the unit is plugged into an external DC power supply. The transmitter will run for

approximately 2.5 hours from a full charge before it needs to be plugged in again.

The USB enabled receiver-unit is plug-and-play ready which means installation simply

involves connecting the unit to a PC via an available USB port. The unit will take a few

moments to initialise, during which time the indicator LED will glow red. Once ready,

the receiver-unit will enter “mouse-mode” which is indicated by the LED glowing blue.

3.2.1 Modes of Operation

The different colours of the LED and what it indicates are listed in the following table:

LED Colour Function

Red Receiver initialising/No signal

Blue Operating in mouse-mode

Green Operating in keyboard-mode

Table 3-1: LED Colour and Corresponding Modes of Operation

3 System Overview Jadon Clews

27

3.2.2 Tilt-Orientation

Both mouse and keyboard-modes are designed to send USB commands to the connected

PC according to the tilt-orientation of the transmitter-unit. The orientation is

determined by the accelerometer and is divided into nine possible orientation states.

Each state is represented by a sector within a 3x3 grid:

Adjusting the tilt-orientation along the Y-axis is done by tilting the transmitter-unit as

shown in the following diagram:

X

Y

Figure 3-4: Tilt-Orientation Sector Designations

5

1 2 3

4 6

7 8 9

Default Y

(Sectors 4, 5, 6)

Decrease Y

(Sectors 1, 2, 3)

Increase Y

(Sectors 7, 8, 9)

Figure 3-5: Adjusting Tilt-Orientation along the Y-Axis

3 System Overview Jadon Clews

28

Similarly, adjusting the tilt-orientation along the Y-axis is done by tilting the

transmitter-unit as shown in the following diagram:

Increase X

(Sectors 3, 6, 9)

Default X (Sectors 2, 5, 8)

Decrease X

(Sectors 1, 4, 7)

Figure 3-6: Adjusting Tilt-Orientation along the X-Axis

3 System Overview Jadon Clews

29

The external, 3x3 LED-grid can be connected to the receiver-unit at any time without

having an effect on the behaviour of the system. The receiver-module controls the

LEDs in such a way that the user can visually confirm the current tilt-orientation sector.

The centre LED (representing sector-5) is white and remains permanently illuminated.

The remaining LEDs are blue and are only ever alight if the transmitter-unit is tilted into

their corresponding sector. The always-on LED in the centre provides a reference point

so that the 3x3 grid is useful even under low or zero light conditions. Example sector

indications are shown in the following figure:

Sector-1 Sector-5 Sector-8

Figure 3-7: 3x3 LED-Grid Display with corresponding Tilt-Orientation Sector

3 System Overview Jadon Clews

30

Figure 3-8: Mouse-Mode Button Assignments

Figure 3-9: Cursor Motion according to Tilt-Orientation Sector

3.2.3 Operating in Mouse-Mode

The following figure shows the functionality of each of the transmitter’s buttons when

the system is running in mouse-mode.

When using the system in mouse-mode, buttons A, B and C operate identically to the

buttons on a regular mouse. The motion of the cursor is altered by means of tilting the

transmitter-unit only when button-E is held. This prevents the cursor from moving

unintentionally when the transmitter-unit is not being used. The cursor will move in the

direction dependant on the current tilt-sector according to the following figure:

Button-D is used to switch from mouse-mode into keyboard-mode. This button must be

pressed and held for one second to take effect. A successful change of operating mode

is indicated by a change in colour of the tri-colour LED.

5

9 8 7

4 6

3 2 1

A Mouse Centre Click

B Mouse Left Click

C Mouse Right Click

D Change Mode

E Enable Cursor Motion

A

C B

D

E

Top Buttons Bottom Buttons

3 System Overview Jadon Clews

31

Figure 3-10: Keyboard-Mode Button Assignments

3.2.4 Operating in Keyboard-Mode

The following figure shows the functionality of each of the transmitter’s buttons when

the system is running in keyboard-mode.

When using the system in keyboard-mode, pressing button-E repeatedly will cycle

through a set of alpha-numerical characters according to the tilt-orientation of the

transmitter-unit when the button is first pressed. The characters are typed to screen then

selected and replaced by the next character if the button is pressed again within a one-

second duration. If the button is not pressed for a second, the last typed character is

assumed to be the desired character and is de-selected. The following diagram shows

the characters that are cycled through, according to the initial tilt-orientation:

A

C B

D

E

Top Buttons Bottom Buttons
A Caps Lock Toggle

B Backspace

C Enter

D Change Mode

E Cycle Characters

p q r s 7

(P Q R S 7)

1 2 3

5 6

7 8 9

[space] . , ? ! @

‘ - _ () : ; & / %

* # + < = > “ $

4
g h i 4

(G H I 4)

t u v 8

(T U V 8)

j k l 5

(J K L 5)

a b c 2

(A B C 2)

d e f 3

(D E F 3)

m n o 6

(M N O 6)

w x y z 9 0

(W X Y Z 9 0)

Figure 3-11: Alphanumeric Character Selection according to Tilt-Orientation Sector

3 System Overview Jadon Clews

32

For example, if the transmitter-unit had a sector-2 tilt-orientation, and button-E is

pressed, the letter ‘a’ (or ‘A’ if Caps Lock is on) would be typed on-screen and then

selected. If one second elapses and button-E is not pressed again then the system

assumes ‘a’ is the desired character, so it is de-selected and the system becomes ready

for the next keystroke. If however, button-E is pressed again within the one-second

duration, the character ‘a’ is replaced with ‘b’ and the one-second timer is reset. This

process is repeated until the user accepts an entered character.

The tilt-sector designation of character sets was designed to be similar to the layout of a

mobile-phone keypad. This was intended to minimise the time required to learn how to

type with the device (objective P4) as the keypad format is already familiar to most

people.

Pressing button-A will toggle Caps Lock. If a character has just been typed with the

unit but not yet confirmed (one-second duration has not elapsed) pressing button-A will

toggle the case of the currently selected character (e.g. ‘a’ changed to ‘A’ or ‘Z’

changed to ‘z’).

Pressing button-B emulates a Backspace keystroke. If a character has just been typed

with the unit but not yet confirmed (one-second duration has not elapsed) pressing

button-B will clear the selected character and cancel the current character input

operation.

Button-C operates as an Enter keystroke. If a character has just been typed with the unit

but not yet confirmed (one-second duration has not elapsed) pressing button-C will

confirm the selected character early instead of awaiting the full second.

Similarly to when in mouse-mode, button-D is used to switch modes. This button must

be pressed and held for one second to take effect. A successful change of operating

mode is indicated by a change in colour of the LED.

3 System Overview Jadon Clews

33

3.3 Data Flow

The overall flow of data is uni-directional. It begins with the user directly manipulating

the transmitter-unit and ends with mouse and keyboard commands being sent to the

connected PC. The data-flow can be broken down and a basic representation can take

the form of a number of relatively linear steps:

1. Status of the buttons and output from the accelerometer are input to the transmitter-

unit’s microcontroller.

2. The transmitter-unit’s microcontroller takes the analogue signals from the

accelerometer, and the digital signals from the buttons. This data is processed and

encapsulated by additional data to form a data packet.

3. The data packet is sent to the wireless transmitter-module which broadcasts the

packet over-the-air.

4. The receiver-module receives the data packet and forwards it to the receiver-unit’s

microcontroller.

5. The microcontroller decodes the packet into useful data bytes which are sent to the

appropriate output control functions (LED and USB drivers).

6. LED control functions update the status of the receiver-unit’s LEDs and the USB

driver functions send the appropriate USB commands to the PC.

These steps are repeated continuously whilst the two units are operational.

3 System Overview Jadon Clews

34

Figure 3-12: Data-Flow throughout the System

Following is a diagram detailing the basic data flow within the overall system:

The transmitter-unit basically acts as a “dumb” device by simply forwarding the user

input data (button status and accelerometer outputs) to the receiver via the wireless link.

The actual processing of the input data is performed by the receiver-unit’s

microcontroller.

Transmitter-Unit

Z-Axis Signal

Y-Axis Signal

Microcontroller

X-Axis Signal

ADC Encode

Data

Packet

Accelerometer

5 x Buttons
Button Status

Digital I/O

USART

Wireless TX Module

433.92MHz Wireless Transmissions

Receiver-Unit

LEDs Wireless RX Module

Microcontroller

PC

Digital

I/O

LED

Control

USART

USB

Driver

Decode

Data

Packet
HID Compliant Data

3 System Overview Jadon Clews

35

3.4 Wireless Data Packets

The need to encapsulate wirelessly transmitted data into data packets is explained in

section 2.2.2 Wireless Serial Communications. Packet formation is something that must

be consistent between both the transmitter and the receiver-units. The protocol utilised

in the final system design underwent a number of revisions to balance processing speed

with robustness (a more robust packet format is less likely to incur errors). It was

deemed prudent to incorporate only a simple two-byte header into the packet followed

by the four data bytes. Testing proved that this simple format was just as robust within

the tested environments as a packet with additional authentication protocols. The

following table shows the format of the data packet utilised in the final design:

Byte Name Byte Value (Hexadecimal) Byte Description

SOH (Start of Header) 0x01 These two bytes form the

packet header. SOT (Start of Text) 0x02

Data1 0xXX These four bytes are the

actual data sent from the

transmitter to be processed

by the receiver.

Data2 0xXX

Data3 0xXX

Data4 0xXX

Table 3-2: Utilised Data Packet Format

The actual data bytes are stored as elements of a four-byte data array. A similar array

exists for both the transmitter and the receiver firmware and are named

Global_TX_Bytes[] and Global_RX_Bytes[] respectively. The value stored in each of

the elements at any time represents specific data as detailed in the following table:

Array Element Data

0 Push-Button States.

1 Accelerometer Output Channel-X

2 Accelerometer Output Channel-Y

3 Accelerometer Output Channel-Z

Table 3-3: Data Represented within Packets

3 System Overview Jadon Clews

36

3.5 USB Implementation

A few different protocols exist by which PC peripherals such as keyboards and mice

can be interfaced with a PC. The protocols which were considered for this project

include:

• Parallel Port

• Serial Port (RS-232)

• PS/2 Port

• USB Port

Ultimately the decision was made to make the device HID compliant using the USB

protocol. Following is a list of reasons which factored into this decision:

• Plug-and-play capable (as per objectives P3 and P4).

• Power provided via the USB port (as per objective S9).

• Available on all modern PCs including laptops/notebooks.

• Compatible with recent versions of the main, available operating systems including

Windows, Mac OS X and Linux (as per objective P6).

Possibly the primary deciding factor however was the discovery of the existence of a

freely-available, firmware-based, USB driver developed by a third party. A web-search

for USB drivers implemented in firmware turned up a product named “AVR-USB”

from a company called “Objective Development”. The web-site also included a number

of projects available as example implementations of the driver which proved invaluable

to the project development. Further information about the driver (including the web

address and product licensing information) can be found in Appendix A. Details of the

integration of the USB driver into this project will be discussed later in section 5.3.2

USB Interface Firmware Driver.

3 System Overview Jadon Clews

37

3.6 HID Report Descriptor

General USB information (including the required use of a HID Report Descriptor) can

be found in section 2.3 USB Protocol – HID Compliance. Basically, the USB driver

implemented in the firmware needs to be provided with a report (series of bytes) which

matches the format specified by the HID Report Descriptor. The USB driver creates the

reports in the defined format, and then transmits the reports to the connected PC.

For the purpose of this particular application, the device had to be capable of emulating

a mouse as well as a simple keyboard. Thus the HID Report Descriptor defined two

possible report structures identified by the value of the first byte within the array. The

value of this “Report ID” byte is either 1 or 2, and indicates either a keyboard or mouse

report respectively. The structures of these reports are outlined in the following tables:

Byte Data

B0 Report ID. Equals ‘1’ in this case, indicating a keyboard report.

B1 Modifier Status. Each bit represents the state of one of the 8 possible modifiers

(0=off, 1=on). The modifiers are (from least to most significant bit):

b0:Left Ctrl

b1: Left Shift

b2: Left Alt

b3: Left GUI key

b4: Right Ctrl

b5: Right Shift

b6: Right Alt

b7: Right GUI key

B2 Bytes 2 to 7 can each be a different keyboard keystroke (excluding modifier

keys). Up to 6 keystrokes can be sent simultaneously using this report

structure. For this particular application though, only one keystroke is ever sent

at a time. The possible values range from 0x00 to 0x65 and the corresponding

keystrokes are defined in the document HID Usage Tables mentioned in

section 2.3.2 HID-Class.

B3

B4

B5

B6

B7

Table 3-4: Keyboard Input Report Format (for HID)

3 System Overview Jadon Clews

38

Byte Data

B0 Report ID. Equals ‘1’ in this case, indicating a keyboard report.

B1 Keyboard LED status. The first five bits in this byte represent the status of the

five possible keyboard LEDs (0=off, 1=on). The LEDs are (from least to most

significant bit):

b0: Num Lock LED

b1: Caps Lock LED

b2: Scroll Lock LED

b3: Compose LED

b4: Kana LED

b5 to b7: N/A (padded with zeros)

This output functionality isn’t utilised in the final design but its existence

allows for future expansion (e.g. a hardware Caps Lock indicator).

Table 3-5: Keyboard Output Report Format (for HID)

Byte Data

B0 Report ID. Equals ‘2’ in this case, indicating a mouse report.

B1 Mouse Buttons. The first three bits represent the state of three mouse buttons

(0=off, 1=on). The possible buttons are (from least to most significant bit):

b0: Button 1 (Left Click)

b1: Button 2 (Right Click)

b2: Button 3 (Centre Click)

b3 to b7: N/A (padded with zeros)

B2 This byte is signed and thus possible values range from -127 to 127. This value

determines the number of pixels by which the mouse cursor shall be displaced

along the X-Axis (-ve values to the left, +ve values to the right.

B3 This byte is signed and thus possible values range from -127 to 127. This value

determines the number of pixels by which the mouse cursor shall be displaced

along the Y-Axis (-ve values upwards, +ve values downwards.

Table 3-6: Mouse Input Report Format (for HID)

3 System Overview Jadon Clews

39

The actual HID Report Descriptor utilised for this project forms part of the file usb.c

which can be found on the attached CD (see Appendix G).

The receiver-unit’s firmware operates by first processing the data from the received

wireless packets, then creating appropriate input reports depending on the transmitter-

unit’s status and the current operating mode (mouse or keyboard). These reports take

the form of simple arrays of data bytes. The arrays are sent to the USB driver which

then transmits the data to the PC according to the USB and HID protocols.

3.7 Using a Serial Level Converter for Debugging

System debugging often required having the microcontroller send specific data to a PC

which could then be shown on-screen using a serial terminal emulator. For example,

the transmitter-unit’s microcontroller could be programmed to continuously transmit the

value read from one of the accelerometer outputs to enable manual calibration. The

microcontroller’s USART utilises TTL line levels for the serial signal (0V for 0 and

+5V for 1). This is incompatible with the levels specified by the RS-232 protocol

implemented by a PC’s serial port (+5 to +15V for 0 and -5 to -15V for 1). Thus line

level conversion is required for the PC to be able to recognise the serial data. The

concept of converting serial protocol line levels from one standard to another is

explained in section 2.2.1 Serial Data Level Conversion. A TTL to RS-232 converter

unit was created specifically for this project and was used for debugging both the

transmitter and receiver-units. Because it was only required for debugging, the unit

remained external and was not incorporated into the final design. The schematic and

component details for the converter are located in Appendix E.

4 Transmitter-Unit

4 Transmitter-Unit

This section contains specific details pertaining to the design and construction of the

transmitter-unit and its subsystems. This is broken into three parts; the electronics used

in the transmitter, the physical assembly of the unit and the firmware progr

the microcontroller.

4.1 Transmitter-Unit

The design of the transmitter

• Five push-button inputs.

• An accelerometer to sense tilt

• A transmitter to wirelessly send data.

• The unit must be capable of operating from batteries or a mains

pack.

• All the electronics must fit inside a relatively small enclosure.

The following circuit diagram details the components selected to meet these

requirements and the way in which they we

Figure

40

Unit

This section contains specific details pertaining to the design and construction of the

and its subsystems. This is broken into three parts; the electronics used

in the transmitter, the physical assembly of the unit and the firmware progr

Unit Electronics

The design of the transmitter-unit produced the following requirements:

button inputs.

An accelerometer to sense tilt-orientation.

A transmitter to wirelessly send data.

e capable of operating from batteries or a mains-connected DC plug

All the electronics must fit inside a relatively small enclosure.

The following circuit diagram details the components selected to meet these

and the way in which they were connected.

Figure 4-1: Transmitter-Unit Circuit Schematic

Jadon Clews

This section contains specific details pertaining to the design and construction of the

and its subsystems. This is broken into three parts; the electronics used

in the transmitter, the physical assembly of the unit and the firmware programmed into

produced the following requirements:

connected DC plug-

The following circuit diagram details the components selected to meet these

4 Transmitter-Unit Jadon Clews

41

Note: A full-size, colour version of the schematic and the list of component details can

be found in Appendix B.

Specific information regarding each of the main components of the transmitter system

will be provided in the following sections. This information will include important

device specifications and an explanation of why the relevant component was selected.

A list of all the components used in the transmitter-unit including the corresponding

manufacturer, supplier and cost details can be found in Appendix D.

4.1.1 Transmitter Microcontroller

The basic design of the transmitter circuit defined the requirements of the utilised

microcontroller. The required capabilities include:

• Serial communications – for sending data to the wireless transmitter-module and

also used for debugging.

• ADC (Analogue to Digital Converter) with at least three channels – to convert the

analogue signals from the accelerometer into useable data bytes.

• At least five digital input channels – for the five push-buttons.

• In-System Programmable – so that firmware alterations can be made without

removing the microcontroller from the circuit.

The decision as to which microcontroller would be used for the transmitter was made

after a microcontroller was selected for the receiver-unit. Since this already selected

device also met the requirements of the transmitter microcontroller, it was decided that

the two devices would be identical. This would reduce the amount of time required to

create code functions that would be common to both microcontrollers (specifically

hardware initialisation and USART control). Some microcontrollers utilise different

names for similar hardware registers which would require slightly modified code to

perform identical operations. Using identical microcontrollers prevented this

complication.

4 Transmitter-Unit Jadon Clews

42

The microcontroller selected for use in the transmitter was the AVR ATmega8

manufactured by Atmel. Additional data pertaining to this device is located in

Appendix D and the datasheet is included on the accompanying CD (see Appendix G).

The clock signal for the microcontroller is supplied by means of a 12.0MHz crystal,

again identical to the microcontroller used for the receiver-unit. The decision behind

the clock speed for the receiver relates to the USB driver and is explained in section

5.1.1 Receiver Microcontroller. It was deemed prudent to clock the transmitter’s

microcontroller at an identical speed to ease the synchronisation of serial

communications with the USART.

4.1.2 Serial Interface

Serial communications were required from the microcontroller for two reasons:

1. Data must be forwarded to the wireless transmitter-module in serial format.

2. Serial transmission and reception is required for system debugging.

The microcontroller’s onboard USART was utilised for serial communications and

connected directly to the wireless transmitter-module.

The USART was also employed for system debugging by means of a TTL to RS-232

level converter unit (see section 3.7 Using a Serial Level Converter for Debugging).

4.1.3 TX Module

A 433.92MHz wireless serial transmitter (TX) module was selected due to its low cost

and ease of implementation. The unit has a data pin which simply connects to the serial

data output from the microcontroller (USART). Provided the module is powered, this is

all that is required for the unit to wirelessly transmit serial data.

The transmission range of the module is proportional to the voltage level of its supply.

This fact had a significant influence on the selection of a suitable power-module (see

section 4.1.6 Power-Module).

Additional data pertaining to the wireless transmitter-module can be found in Appendix

D and the datasheet can be found on the accompanying CD (see Appendix G).

4 Transmitter-Unit Jadon Clews

43

4.1.4 Accelerometer

There are two important features that differ between accelerometers available on the

market today. They are:

1. The number of measurable axis – Single-axis accelerometers are available which

sense acceleration in a single dimension. Two-axis accelerometers are also

available which measure acceleration along two axis perpendicular to each other.

Finally, three-axis accelerometers contain sensors which measure acceleration in all

three dimensions.

2. The output data type – Accelerometers output the measured acceleration in one of

two formats (see section 2.1 Measuring Tilt with an Accelerometer). The first is an

analogue voltage which represents the acceleration by a voltage level proportional to

the supply voltage range. The second output format is a digital signal whereby the

data is output in the form of serial data bytes.

It was deemed preferable to utilise an accelerometer with analogue outputs as this

would require less complex code to interface with the microcontroller.

Additionally, a three-axis microcontroller would be proffered as it would allow for

various mounting orientations without hindering the tilt-orientation measuring

functionality. Also, three measured axis would allow for a wider range of tilt-

orientation variations.

The accelerometer selected to meet these specifications was the ADXL330. Additional

data pertaining to this unit is located in Appendix D and the datasheet can be found on

the accompanying CD (see Appendix G). The accelerometer was purchased pre-

mounted on a break-out board to ease incorporation into the transmitter circuit.

4 Transmitter-Unit Jadon Clews

44

4.1.5 Buttons

The transmitter design specified the incorporation of five push-buttons which were to be

mounted on the enclosure in such a way that they would be easily accessible and

operable whilst the unit was held by a single hand. The push-buttons therefore had to

be large enough that they could be easily located by fingers, without requiring the user

to visually examine the unit. It was also deemed preferable that the buttons provide a

solid tactile response when depressed so as to provide the user assurance of when a

button has been properly depressed, again without having to visually examine the unit.

In keeping with objective S6, it was desirable for the buttons to “suit” the transmitter

enclosure to maintain a desirable aesthetic. Thus the buttons were not selected until

after a suitable enclosure had been chosen.

Large, momentary-contact, PCB-mount, tactile push-buttons were selected along with

large, round, black button caps to maintain the aesthetic. Because the buttons were

designed to be mounted on a PCB, they were each soldered to a small section of

stripboard. Plastic stand-offs were then attached to the boards which provided a means

of attaching the button “modules” to the transmitter enclosure. Hook-up wire was

soldered to the relevant copper strips on the boards which provided a means of

interfacing the buttons with the microcontroller’s I/O pins.

4 Transmitter-Unit Jadon Clews

45

4.1.6 Power-Module

A number of the defined objectives (section 1.1 Project Objectives) formed the basis on

which the power-module selection was made:

• Objective P1 specified that the transmitter-unit should operate wirelessly. In

addition to wireless data communications, this objective also required that the

transmitter-unit be self-powered. Thus the unit had to be battery-operated.

• Objective P2 required the power-module to be small enough to fit within a hand-

held enclosure.

• Objective S1 combined with the wireless transmitter-module characteristics (higher

supply voltage increases transmission range) defined an ideal voltage supply range.

• Objective S2 stated that the transmitter should preferably be rechargeable and

capable of operating whilst being re-charged.

• Objective S3 defined the preference for a long operating time from a single charge.

The first four objectives listed here (P1, P2, S1 and S2) led to the selection of an

Altronics DC-DC Converter module. At the design stage, it was deemed likely that

objective S3 would also be met because of the low power requirements of the other

selected components. This objective however, was not confirmed until after the circuit

was built and testing was conducted.

The power-module was designed around Texas Instruments TL499A Switching

regulator. It takes a DC input voltage and outputs a (modifiable) output voltage. The

module also incorporates trickle-charge capability via an external DC source for use

with NiCd of NiMH batteries. For this application, the input voltage was provided by

two 1.2V, AA sized, series connected NiMH batteries (2.4V). The module was

configured to output 12V which was deemed ideal for the transmitter-module supply.

4 Transmitter-Unit Jadon Clews

46

This output level was ideal for the transmitter-module, however other components

within the transmitter circuit required different supply voltage levels as detailed in the

following table:

Transmitter-Module Component Specified Supply Voltage

433.92 MHz Serial Transmitter-Module +12V (For Large Transmission Range)

AVR ATmega8 Microcontroller +5V (Ideal)

ADXL330 Accelerometer +3.3V (Ideal)

Table 4-1: Transmitter-Unit Component Supply Voltage Requirements

Thus, three, distinct voltage levels were required for various components within the

unit. The power-module directly supplied the transmitter-module with a 12V source. A

78L05, +5V voltage regulator was incorporated into the power-module to provide a

regulated supply voltage for the microcontroller. Two 1N4148 diodes connected in

series to the +5V output created a 1.4 volt drop. Thus a +3.6V supply level existed for

the accelerometer. Although this differed slightly from the accelerometer’s ideal supply

voltage (+3.3V) it was still well within the allowed supply range and was implemented

with readily available components.

Testing of the completed transmitter-unit with the final firmware version, found that the

selected batteries and power-module provide the unit with 2.5 hours of power from a

single charge.

4 Transmitter-Unit Jadon Clews

47

4.2 Transmitter-Unit Physical Assembly

The following sections detail the enclosure used for the transmitter-unit as well as how

the internal electronics were arranged to fit. It was important that a suitable

arrangement of the internal components be found which would enable everything to fit

within the enclosure whilst still allowing for circuit modification and firmware

alterations should the need arise.

4.2.1 Transmitter Enclosure

The most important factor in selecting a suitable enclosure for the transmitter-unit was

objective P2 which specified that the unit should be small enough to fit in a user’s hand.

Secondary objective S4 required the enclosure to be rounded with no sharp edges.

Objective S6 also factored into the selection by specifying that the enclosure should be

aesthetically pleasing.

These three key factors led to the final decision. The selected enclosure was previously

utilised as the housing for a cordless screwdriver. The existing batteries, motor and

other electronics were removed from the unit to make room for the transmitter

electronics. Following is a photo of the original screwdriver unit prior to any

modification.

Figure 4-2: Cordless Screwdriver which became the Transmitter-Unit Enclosure

4 Transmitter-Unit Jadon Clews

48

Figure 4-3: Assembled Transmitter-Unit with Externally Accessible ISP Header

The following photograph shows the modified enclosure with all of the transmitter-unit

electronics installed. At this stage of construction, an existing hole in the enclosure

(originally used for a button which switched the rotational direction of the cordless

screwdriver) was left exposed to provide access to the ISP header, thus enabling

firmware modifications without the need to regularly disassemble the unit. The

transmitter microcontroller is also visible through the hole.

The next photograph shows the final version of the modified enclosure. The three

thumb-buttons are visible near the top of the unit and the external DC-supply jack can

be seen at the bottom. The exposed holes have been filled with putty typically used for

auto body-repair. Once hardened, the area was sanded smooth then spray-painted black.

Figure 4-4: Fully Enclosed Transmitter-Unit

ISP

Header

Thumb

Buttons

(A, B, C)

External DC

Supply Jack

Index-Finger

Buttons (D, E)

at Rear

4 Transmitter-Unit Jadon Clews

49

Machining of the transmitter enclosure required the drilling of six holes (five buttons

plus the DC jack) plus grinding down of some of the internal plastic supports to make

room for the electronics. The drilling, cutting and shaping was all performed using a

Dremel rotary tool and a set of needle files.

4.2.2 Layout of Transmitter Components and Circuit Boards

Many configurations were tested before a suitable arrangement was found in which all

the components would fit within the enclosure. Of the main components, only the

buttons and the DC jack were attached permanently to the enclosure. Everything else

was installed in such a way that it could be easily removed should the need arise. The

major components are listed below in the same order that they were installed:

1. Button-Modules - The button modules had to be permanently glued to the inside

walls of the unit as this was deemed the most effective method of providing a sound

mechanical attachment without using externally visible bolts or screws. Thus the

buttons were installed whilst maintaining the aesthetic (objective S6).

2. DC Jack - The externally accessible DC jack was the other permanently attached

component. The jack was also glued to the enclosure for the same reasons as the

button-modules (sound mechanical attachment with negligible aesthetic impact).

3. Power-Module/Battery-Pack - By far the largest components of the unit, the power-

module and battery-pack were attached together before being installed. It was

deemed prudent that they be fitted first (apart from the permanently installed

components listed previously) as it was the least likely candidate for re-arrangement

if required later. Simply put, the power-module/battery-pack was installed first and

the remaining components were fit around them.

4. Microcontroller/Peripheral Components - The microcontroller was attached to a

section of stripboard which was in turn was attached to another section of stripboard

via a DIP (Dual In-Line Package) socket and pin arrangement. The second layer

contained the clock-source crystal and capacitors as well as connection points for

the other components within the unit. This arrangement was deemed necessary in

order to fit the microcontroller within what little space was available.

4 Transmitter-Unit Jadon Clews

50

5. Transmitter-Module – Initially mounted towards the bottom of the unit, the

transmitter-module was relocated as far from the power-module as possible to

minimise the risk of any RF-noise that might affect the wireless signal. Thus the

transmitter was relocated to the top of the unit. This new location was close to the

peripheral components circuit board so the transmitter-module was attached directly

to it instead of via hook-up wire like the other components.

6. Accelerometer – The accelerometer was the final component to be installed. The

orientation of the accelerometer’s axis’ could be compensated for within the

firmware, so this was not a factor in deciding its mounting location. Ultimately, the

accelerometer was attached in its final position because this was the most easily

accessible space that remained within the unit.

The following photo shows how the internal components were arranged within the

transmitter-unit.

To ISP Header

Button-D

Button-E

To Button-B

Button-C

Button-A

DC Jack

Figure 4-5: Arrangement of Transmitter-Unit's Internal Components

4 Transmitter-Unit Jadon Clews

51

The next figure details the final mounting positions of the major components within the

transmitter-unit enclosure.

Accelerometer Power-Module Battery-Pack

Transmitter- Module Peripheral Components Microcontroller

Button-Modules Screw-Mounts DC Jack

Enclosure Wall Machined Voids

Figure 4-6: Transmitter-Unit Internal Component Layout

A

B

E

C

D

4 Transmitter-Unit Jadon Clews

52

4.3 Transmitter-Unit Firmware

The firmware developed for the transmitter-unit was relatively straightforward. As

mentioned previously (section 3.3 Data Flow), the transmitter-unit performs minimal

processing of data and simply serves to capture button states and accelerometer outputs,

then forward this data to the receiver-unit. This data is encapsulated in a wireless

packet as per the specifications outlined in section 3.4 Wireless Data Packets.

The code for the transmitter-unit is separated into two c-code files, each of which can be

found on the included CD (see Appendix G). The files include:

• WiSHABI_TX.c – the main code for the transmitter.

• serial.c – the required USART related functions.

The following flowchart provides a general representation of the complete firmware

execution.

Initialise Hardware

Get Button States, Store as B0
Get Acc Channel X Value, Store as B1
Get Acc Channel Y Value, Store as B2
Get Acc Channel Z Value, Store as B3

Have B0, B1, B2 or B3

Changed? Y N

Send Data Packet with Current B0, B1, B2

and B3

Figure 4-7: Transmitter Firmware Flowchart Representation

M
ai

n
 P

ro
g

ra
m

 L
o

o
p

Start

4 Transmitter-Unit Jadon Clews

53

The execution of the transmitter firmware can be broken down into three major

collections of functions:

1. Serial interface (including packet formation and transmission).

2. ADC interface required for the accelerometer.

3. Digital I/O interface required for the push-buttons.

These three areas are covered in more detail in the following sections.

4.3.1 Serial Interface

The transmitter microcontroller’s USART functionality was utilised primarily for the

purpose of serial transmission. A serial “driver” was written, containing the minimum

functions required to transmit a byte of data. The driver included a function named

USART_Transmit() which, when called with a data byte as an input parameter, simply

“transmits” said byte via the TX pin of the microcontroller. This pin is connected

directly to the wireless transmitter-module, thus enabling wireless, serial, data

transmission. The code for the serial driver (serial.c) is located on the accompanying

CD (see Appendix G).

Another function was written specifically to transmit the unit’s input data within the

defined structure of a data packet. Send_Packet() calls USART_Transmit() multiple

times to sequentially transmit the individual bytes which make up the packet. The data

packet format is defined in section 3.4 Wireless Data Packets. The table in this section

details the data values for the bytes which make up the packet. Each of these values is

sequentially sent as a parameter to USART_Transmit in order to transmit the packet.

The code function Send_Packet() is part of the main code file for the transmitter-unit

(WiSHABI_TX.c).

The values of the actual input data bytes which form part of the data packet are stored as

elements of a globally accessible array of bytes (see section 3.4 Wireless Data Packets).

Send_Packet() accesses these elements when they need to be transmitted. The values of

the elements are updated every iteration of the main program loop so the input data is

constantly up-to-date.

4 Transmitter-Unit Jadon Clews

54

4.3.2 ADC (Analogue to Digital Converter)

As previously mentioned (section 4.1.4 Accelerometer) the accelerometer device

utilises analogue signals as the output from its three channels (X, Y and Z). Thus the

analogue to digital converter (ADC) capability of the microcontroller had to be

incorporated into the firmware.

The ATmega8 microcontroller supports 12 bit analogue to digital conversion on up to

eight channels. There is however only one actual ADC system, so reading a voltage

level on a specific channel first requires specifying which channel the ADC should

connect to.

A function was written for this purpose. This function (called Get_ADC()) takes a byte

value as an input representing the channel to read and then returns the converted value

in the form of a data byte.

Although the onboard ADC subsystem is capable of retuning digital values with a

resolution of up to 12 bits, the firmware only utilises the 8 most significant bits. An 8

bit value was deemed sufficient for the purpose of this application. This has the

additional advantages of reducing both ADC code complexity as well as the required

memory space. Thus the returned value from Get_ADC() is a single, 8-bit, data byte.

For every iteration of the main firmware loop, Get_ADC() is called for each output

from the accelerometer. The returned values are stored in the appropriate elements of

the main data array (Global_TX_Bytes[]) ready to be transmitted wirelessly as part of a

data packet.

The Get_ADC() function is part of the main code listing for the transmitter-unit

(WiSHABI_TX.c) which is included on the CD.

4 Transmitter-Unit Jadon Clews

55

4.3.3 Button Detection

The data packet format listed in section 3.4 Wireless Data Packets specifies that the first

byte of actual data represents the states of the five push-buttons mounted on the

transmitter-unit. As can be seen from the transmitter circuit diagram (Appendix B) the

push-buttons are connected to the first five pins of port B. Thus the state of each button

can be determined simply by reading the value on port B.

When the transmitter microcontroller first initialises its data ports, the internal pull-up

resistors on port B are activated. This means the default state for each button is high

(logical 1) and to bring them low (logical 0), the button must short the corresponding

pin with ground. The result is a logical 1 for each button by default and a logical 0

when the button is pressed “on”. This is counter-intuitive so measures were taken to

prevent confusion. When the byte on port B is read in, the value is inverted. Thus the

resultant byte sent from the transmitter-unit and processed by the receiver-unit uses the

following format:

Bit Connected Pin Description (1 = ON, 0 = OFF)

0 PORTB.0 Button A Status

1 PORTB.1 Button B Status

2 PORTB.2 Button C Status

3 PORTB.3 Button D Status

4 PORTB.4 Button E Status

5 N/C Not Connected

(Always = 0) 6 N/C

7 N/C

Table 4-2: Button Status Data Byte Format

The functionality described in this section is implemented in the firmware as part of the

main transmitter-unit program listing (WiSHABI_TX.c).

5 Receiver-Unit

5 Receiver-Unit

This section contains specific details pertaining to the design and construction of the

receiver-unit and its subsystems. This is broken into three parts; the electronics used in

the receiver, the physical assembly of the unit and the firmware programmed into the

microcontroller.

5.1 Receiver-Unit Electronics

The design of the receiver

• A receiver to capture wirelessly broadcasted data packets.

• Nine regular LEDs arranged in a 3x3 grid to display tilt

• A tri-coloured (RGB) LED to indicate operating mode

• USB connectivity via a standard

• Capable of operating from the voltage supplied via the USB p

The following circuit diagram details the components selected to meet these

requirements and the way in which they were connected

56

This section contains specific details pertaining to the design and construction of the

and its subsystems. This is broken into three parts; the electronics used in

iver, the physical assembly of the unit and the firmware programmed into the

Unit Electronics

receiver-unit produced the following requirements:

A receiver to capture wirelessly broadcasted data packets.

LEDs arranged in a 3x3 grid to display tilt-orientation.

coloured (RGB) LED to indicate operating mode or loss of wireless signal.

USB connectivity via a standard-B type USB connector.

apable of operating from the voltage supplied via the USB port.

The following circuit diagram details the components selected to meet these

and the way in which they were connected.

Figure 5-1: Receiver-Unit Circuit Schematic

Jadon Clews

This section contains specific details pertaining to the design and construction of the

and its subsystems. This is broken into three parts; the electronics used in

iver, the physical assembly of the unit and the firmware programmed into the

orientation.

or loss of wireless signal.

The following circuit diagram details the components selected to meet these

5 Receiver-Unit Jadon Clews

57

Note: A full-size, colour version of the schematic and the list of component details can

be found in Appendix C.

Specific information regarding each of the main components of the receiver system will

be provided in the following sections. The information will include important device

specifications and an explanation of why the relevant component was selected.

A list of the components used in the receiver-unit including the corresponding

manufacturer, supplier and cost details can be found in Appendix D.

5.1.1 Receiver Microcontroller

The basic design of the receiver circuit defined the requirements of the utilised

microcontroller. The required capabilities include:

• Serial communications – for receiving data from the wireless receiver-module and

also for debugging.

• Operable at a Clock-Speed of 12.0MHz – to meet the requirements of the firmware

USB driver.

• Hardware interrupt enabled I/O pin – for use by the firmware USB driver.

• At least twelve digital output channels – nine to control the 3x3 LED-grid and three

to control the RGB LED.

• In-System Programmable – so that firmware alterations can be made without

removing the microcontroller from the circuit.

The most important factor that influenced the choice of microcontroller was the

requirements defined by the USB driver. More information on this is located in a later

section (5.1.4 USB Interface Hardware) but ultimately, the AVR ATmega8

microcontroller was selected as this is the device for which the USB driver was written

(so no modifications were required). Additionally, the ATmega8 met all the other

requirements listed here.

5 Receiver-Unit Jadon Clews

58

5.1.2 Serial Interface

Serial communications were required from the microcontroller for two reasons:

1. Data must be received from the wireless transmitter-module in serial format.

2. Serial transmission and reception is required for system debugging.

The microcontroller’s onboard USART was utilised for serial communications and

connected directly to the wireless receiver-module.

The USART was also employed for system debugging by means of a TTL to RS-232

level converter unit (see section 3.6 Using a Serial Level Converter for Debugging).

5.1.3 RX Module

A 433.92MHz wireless serial receiver (RX) module was selected due to its low cost and

ease of implementation. The unit has a data pin which simply connects to the serial data

input at the microcontroller (USART). Provided the module is powered, this is all that

is required for the microcontroller to receive wirelessly transmitted serial data.

To help increase the range of the wireless system, an antenna was incorporated into the

design and mounted on the receiver-unit’s enclosure. A ¼ wave whip antenna was

selected as it was designed specifically for the 433.92MHz frequency. Testing proved

that the inclusion of the antenna increased the unobstructed reception range from less

than one metre to approximately 45 metres before any signal loss occurred.

The datasheet for the receiver-module is included on the CD (see Appendix G).

5.1.4 USB Interface Hardware

A suitable, firmware-only USB driver was selected to apply to this project. The

firmware itself is discussed later in section 5.3.2 USB Interface Firmware. The

hardware requirements for implementing USB are specified with the firmware. Only

two I/O pins are required from the microcontroller, provided that one of them can be

used as a hardware-interrupt. In addition, three resistors, two 1N4148 diodes, a single

10 F electrolytic capacitor and the actual USB connector are also required. All of these

components and their required arrangement can be seen in the circuit schematic for the

receiver-unit (Appendix C).

5 Receiver-Unit Jadon Clews

59

Additionally, the microcontroller has to be clocked with an external crystal at 12, 15, 16

or 20MHz to be compatible with the firmware driver. A clock speed of 12.0MHz was

selected as this was the default configuration for the driver meaning no additional

firmware modifications were required.

5.1.5 LEDs

The reasons for incorporating the tri-colour LED and the 3x3 LED-grid are explained in

sections 3.2.1 Modes of Operation and 3.2.2 Tilt-Orientation respectively.

A total of twelve digital output pins were used to control the LEDs. The I/O pin and the

corresponding connected LED are listed in the following table.

Microcontroller I/O Pin Connected LED

PORTB.0 Grid LED for Sector 1

PORTB.1 Grid LED for Sector 2

PORTB.2 Grid LED for Sector 3

PORTB.3 Grid LED for Sector 4

PORTB.4 Grid LED for Sector 5

PORTB.5 Grid LED for Sector 6

PORTC.0 Grid LED for Sector 7

PORTC.1 Grid LED for Sector 8

PORTC.2 Grid LED for Sector 9

PORTC.3 RGB LED Blue

PORTC.4 RGB LED Green

PORTC.5 RGB LED Red

Table 5-1: Microcontroller I/O Pin and the Corresponding Connected LED

5 Receiver-Unit Jadon Clews

60

5.2 Receiver-Unit Physical Assembly

The following sections detail the enclosure used for the receiver-unit as well as how the

internal electronics were arranged.

5.2.1 Receiver Enclosure

The choice of enclosure had little effect on the outcome of the project, provided it did

not hinder performance in any way. Thus the only significant factor which determined

the selected enclosure was objective S12 which specified that it should be aesthetically

pleasing. There were two additional (although minor) factors which influenced the

decision:

1. Enclosure Material – It was deemed preferable that the enclosure be made from a

material that could be easily machined, as holes had to be cut to provide access to

various connectors as well as mounting positions for the antenna and tri-colour

LED. Plastic was the most likely candidate to meet this requirement.

2. Size of Enclosure – Unlike the transmitter, the receiver-unit did not have to be

constructed to fit within a small enclosure. Thus an enclosure size large enough to

work with such that all components remained easily accessible would ease the

construction of the prototype.

An aluminium enclosure was found which was decidedly aesthetically pleasing and of

an appropriate size. The aluminium construction gave the unit a sturdy, well-

constructed appearance, which in turn gave the impression of a professionally

constructed unit. The only disadvantage was the added difficulty of machining holes

and slots, as the aluminium is harder to work with (using basic tools) than other

available materials. This was an acceptable cost for an otherwise ideal enclosure.

5 Receiver-Unit Jadon Clews

61

Figure 5-2: Fully Enclosed Receiver-Unit

The following figure shows the finished receiver-unit from two different angles.

Dimensions of the unit can be seen in Figure 3-2 in section 3.1.2 Receiver-Unit Layout.

Two holes were drilled in the lid of the unit to serve as mounting points for the tri-

colour LED and the external antenna. A rounded square hole was cut from the rear

panel to provide access to the USB standard-B connector. Finally, a rectangular slot

was cut from the front end to provide access to the three 10-pin IDC connectors. All of

this machining was performed using a Dremel rotary tool and a set of needle files.

Initially the use of an aluminium enclosure incurred the possibility of hindering wireless

data reception. This fact (plus the desire for increased wireless range – objective S8)

led to the decision to incorporate the externally mounted antenna.

USB

Cable

Antenna

Tri-Colour

LED

3x 10-Pin IDC

Connectors

Rear View Front View

5 Receiver-Unit Jadon Clews

62

5.2.2 3x3 LED-Grid Enclosure

Although technically part of the receiver-unit, it was decided that the 3x3 LED-grid

should be incorporated as an externally connectable module. This way the user would

have the ability to mount it in a location separate to the main receiver-unit and the

option to completely remove the grid.

The grid was mounted within a small, plastic enclosure. The connection to the receiver-

unit is made via a 10-core ribbon cable and 10-pin IDC connectors. The dimensions of

the unit are provided in Figure 3-3 under section 3.1.2 Receiver-Unit Layout. The

following figure shows front and rear views of the 3x3 LED-grid enclosure with a

connected ribbon cable.

Front View Rear View

Figure 5-3: Fully Enclosed 3x3 LED-Grid Unit

5 Receiver-Unit Jadon Clews

63

5.2.3 Layout of Receiver Components and Circuit Board

A section of stripboard was cut to size for the enclosure and used to mount all the

electronics except for the tri-colour LED and the antenna. Arranging the components

on the receiver-unit’s circuit board was straightforward thanks to the relatively large

size of the board.

The following diagram details the final mounting positions of the major components on

the receiver-unit’s circuit board.

1N4148 Diodes Resistors

Ceramic Capacitors Receiver-Module External Antenna Connector

Electrolytic Capacitor External RGB LED Connector Crystal

10-Pin IDC Connectors Microcontroller

USB Standard-B Connector

Circuit Wiring

1

2

3

4

5

6 7

Figure 5-4: Receiver-Unit Circuit Board Component Layout

5 Receiver-Unit Jadon Clews

64

The next figure is a photograph of the fully populated circuit board.

Note the multiple, 10-pin, IDC connectors, each of which is numbered 1 through 7 in

Figure 5-4. Early development stages of the circuit board construction saw some

connectors mounted with the intention of remaining internal (specifically, the ISP port

and serial access). Additionally, the LED-grid unit was going to be incorporated into

the main receiver-unit. When the decision was made to have the grid unit connected

externally, the need arose for an externally accessible connector. At this stage it was

decided that the ISP and serial connections would also be made externally accessible.

Thus additional connectors were mounted at the edge of the board making them

externally accessible after machining a slot into the enclosure. The purpose of each of

the numbered 10-pin IDC connectors is detailed in the following list:

1. Externally accessible ISP connection.

2. Externally accessible I/O pin connection for 3x3 LED-grid.

3. Externally accessible serial (USART) TX and RX connections.

4. Intermediate ISP connector.

5. Intermediate I/O pin connection

6. Original I/O pin connection.

7. Original ISP connection.

Figure 5-5: Receiver-Unit Circuit Board

5 Receiver-Unit Jadon Clews

65

Figure 5-6: Receiver-Unit Circuit Board with Internal Ribbon Cable Connections

The external ports are connected to the original ports via short, internal 10-core ribbon

cables as visible in the following figure.

Pin identifications for the three externally accessible, 10-pin, IDC connectors can be

found in Appendix F.

5.3 Receiver-Unit Firmware

Because the transmitter-unit was designed to perform negligible data processing, the

decoding of the input data (button states and accelerometer outputs) has to be performed

by the receiver-unit. The input data is received wirelessly in the form of data packets as

described in section 3.4 Wireless Data Packets.

In addition to the processing of input data, the receiver-unit also had to contain the

firmware USB driver which accounts for a large portion of the overall code.

The code for the receiver-unit is separated into a number of c-code files each of which

are located on the accompanying CD (see Appendix G). The files include:

• WiSHABI_RX.c – the main code for the receiver.

• usbdrv.c – the third-party created USB driver code.

• usb.c – the application specific USB related functions.

5 Receiver-Unit Jadon Clews

66

• serial.c – the required USART related functions.

• mouse_mode.c – the functionality specific to when the receiver is operating in

mouse-mode.

• keyboard_mode.c – the functionality specific to when the receiver is operating in

keyboard-mode.

The following flowchart provides a general representation of the complete firmware

implemented in the receiver-unit’s microcontroller.

Start

M
ai

n
 P

ro
g

ra
m

 L
o

o
p

Initialise hardware

Execute Mouse-Mode Routines

Keyboard-Mode Routines

Has the Mode-Change
Flag Been Set? Y N

Has the Mode-Change
Flag Been Set? Y N

Figure 5-7: Receiver-Firmware Flowchart Representation

5 Receiver-Unit Jadon Clews

67

Note: The colours in the above diagram (red, green and blue) represent the colour of

the RGB LED during the execution of the corresponding code.

Detailed information regarding both mouse and keyboard-modes will be provided in

subsequent sections (5.3.6 and 5.3.7 respectively).

5.3.1 Serial Interface

The receiver microcontroller’s USART functionality was utilised primarily for the

purpose of serial data reception. A serial “driver” was written containing the minimum

functions required to receive a byte of data. The driver included a function named

USART_Receive() which waits for a serial byte to be received on the RX pin of the

microcontroller and then returns the value of said byte. The RX pin is connected

directly to the wireless receiver-module, thus enabling wireless, serial data reception.

Whenever the microcontroller receives a data byte, the USART-receive interrupt is

flagged, causing the firmware code execution to be diverted to the USART receive

interrupt subroutine. The received byte is checked to ensure that it matches the

requirements of the data packet format. If so, subsequent data bytes are checked and

provided they all match the data packet format, the globally accessible byte array

containing the input data from the transmitter-unit is updated.

5 Receiver-Unit Jadon Clews

68

The following flowchart details the input data authentication and collection procedure

performed by the USART-receive interrupt subroutine:

Disable USART-Receive Interrupt

Read Received Byte

Receive Next Byte, Store as
Global_RX_Bytes[0]

Receive Next Byte, Store as
Global_RX_Bytes[1]

Receive Next Byte, Store as
Global_RX_Bytes[2]

Receive Next Byte, Store as
Global_RX_Bytes[3]

U
S

A
R

T
 R

ec
ei

v
e

In
te

rr
u

p
t

S
u

b
ro

u
ti

n
e

Wait for Next Received Byte

Does Byte = SOH (Start
of Header)? Y N

Does Byte = STX (Start

of Text)? Y N

Enable USART-Receive Interrupt

Exit Subroutine

USART-Receive Interrupt Flagged

Figure 5-8: USART Receive Interrupt Subroutine Flowchart Representation

5 Receiver-Unit Jadon Clews

69

This form of data-packet authentication proved to effectively prevent unintended data

(background RF noise) from being received and processed by the receiver-unit. By

making data reception interrupt-driven (as opposed to periodically polling for received

data bytes) the receiver-unit will always have the most up-to-date input data, and the

code execution will continue un-interrupted in the event that the transmitter-unit is out

of range or not powered. The data packet format is defined in section 3.4 Wireless Data

Packets. The USART receive subroutine is called ISR(USART_RXC_vect) and is part

of the main code file for the receiver-unit (WiSHABI_RX.c).

5.3.2 USB Interface Firmware Driver

The USB protocol is relatively complex to implement in firmware. Some background

information on USB devices (specifically HIDs) can be read in section 2.3 USB

Protocol – HID Compliance and further details pertaining to the USB implementation

specific to this project is located in section 3.5 USB Implementation. Additionally,

further details involving the utilised USB driver can be found in Appendix A.

The USB driver required the inclusion of a number of custom, application-specific

functions and declarations. The most important of which include:

• Defining the HID Report Descriptor Variable (section 3.6 HID Report Descriptor).

• Defining the HID Report Variables (one for keyboard reports and one for mouse

reports).

• usbFunctionSetup() Function which includes code for handling the reception of data

from the PC.

• usbFunctionWrite() Function which includes code for processing data from the PC.

• usbReset() Function which handles a microcontroller initiated USB hardware reset.

• hid_clear() Function which sends all zeroes as keyboard and mouse control

parameters.

• send_packets() which sends specified values as keyboard and mouse control

parameters.

These functions and variables are accessed from the main loop as well as the mouse-

mode and keyboard-mode loops (detailed later in sections 5.3.6 and 5.3.7 respectively).

5 Receiver-Unit Jadon Clews

70

The c-code listing for the application-specific USB functions exists as a separate file

called usb.c.

Provided with the USB driver is a configuration file usbconfig.h. This header file is

simply a list of customizable definitions which are to be altered as per the specific

requirements of the application. For example, if a different AVR microcontroller, clock

speed or I/O pins were used or if the setup was for a class other than HID. For this

project, most of the definitions were left as the default values with the exception of the

following two:

1. USB Device-Name was changed to “WiSHABI” which is a partial acronym for the

title of this project (Wireless Single Handed Accelerometer Based Interface) and

made a suitable device name.

2. USB Vendor-Name was changed to the email address of the device creator

(jadonclews@gmail.com) as per the recommendation of the creators of the USB

driver (see Appendix A).

Both the USB Device-Name and Vendor-Name are required by the PC to provide

details to the user about the connected peripheral.

5 Receiver-Unit Jadon Clews

71

5.3.3 LED Control

A function was created to specifically set all of the LEDs according to the value of a 16-

bit input parameter. The twelve least significant bits of the input value represent the

desired state of the twelve LEDs (1=on, 0=off). The following table details the purpose

of each bit within the input parameter and the microcontroller pin it controls.

Input Byte Controlled LED Connected Microcontroller Pin

b15 Unused – The values

here are always equal to

zero and have no

consequence.

Not Connected b14

b13

b12

b11 RGB LED 3 (Red) Port C, Pin 5

b10 RGB LED 2 (Green) Port C, Pin 4

b09 RGB LED 1 (Blue) Port C, Pin 3

b08 Grid LED 9 (Blue) Port C, Pin 2

b07 Grid LED 8 (Blue) Port C, Pin 1

b06 Grid LED 7 (Blue) Port C, Pin 0

b05 Grid LED 6 (Blue) Port B, Pin 5

b04 Grid LED 5 (White) Port B, Pin 4

b03 Grid LED 4 (Blue) Port B, Pin 3

b02 Grid LED 3 (Blue) Port B, Pin 2

b01 Grid LED 2 (Blue) Port B, Pin 1

b00 Grid LED 1 (Blue) Port B, Pin 0

Table 5-2: LED Control Byte and Connected Hardware Pins

The LEDs in the 3x3 grid all share a common cathode (ground) which means a logic

“1” must be output at the I/O pin to switch on the corresponding LED. Conversely, the

three colours of the RGB LED share a common anode which means each colour is

activated with a logical “0”. Thus the LED control function has to invert the input bits

intended to control RGB LED 1, 2 and 3.

5 Receiver-Unit Jadon Clews

72

The final implementation of the LED control function did not require the assignment of

values for the RGB LED so these bits (b09 to b11) were ignored and the colour of the

RGB LED was determined by a second input variable which represented the current

operating mode. Thus the first input variable controlled the state of the grid LEDs

whilst the second determined the state of the RGB LED.

The LED control function was named Set_LEDs(). It is called by the function

Poll_And_Update_LEDs() which determines the current tilt-orientation (using function

Poll_Sector() to be described in section 5.3.4 Determining Tilt-Sector) and operating

mode, then uses Set_LEDs() to control the LED states accordingly. Both Set_LEDs()

and Poll_And_Update_LEDs() form part of the main receiver code (WiSHABI_RX.c).

5.3.4 Determining Tilt-Sector

As explained previously (in section 3.2.2 Tilt-Orientation) the transmitter’s tilt-

orientation is divided into nine sectors. The calculation of the current sector is

determined by the values within the transmitted data.

The current tilt-sector (a value from 1 to 9) is returned by the function Poll_Sector()

which reads and processes the values within the Global_RX_Bytes[] array which

represent the outputs from the accelerometer. The function first determines the X-

position of the tilt-orientation which narrows the current tilt-sector possibilities down to

one of three vertically-aligned sectors (i.e. sectors 1,4,7, sectors 2,5,8 or sectors 3,6,9).

Next the function determines from the accelerometer values the current Y-position of

the tilt-orientation. Thus the tilt-sector is narrowed down to a single possibility which is

returned by the function.

Poll_Sector() is called by functions within the main receiver code (WiSHABI_RX.c) as

well as the mouse-mode (mouse_mode.c) and keyboard-mode (keyboard_mode.c) files.

The function itself is part of the code listed in the file WiSHABI_RX.c.

5 Receiver-Unit Jadon Clews

73

5.3.5 No-Signal Timeout Detection

As explained in previous section 3.2.1 Modes of Operation, the tri-colour LED uses the

colour red to indicate that the receiver-unit is not receiving a signal. This functionality

is implemented in both mouse and keyboard-modes.

Every iteration of the relevant mode loop increments a counter named Global_Timeout.

If this value reaches a defined limit, another loop is initiated whereby the tri-colour

LED is changed to glow red until the Global_Timeout counter is reset. The loop also

continuously polls the USB driver so as to avoid losing USB connectivity.

Global_Timeout is reset to zero whenever the USART receive interrupt vector (see

section 5.3.1 Serial Interface) receives a valid data packet. Thus the counter will only

increment beyond one if the mode-loop completes multiple iterations without the unit

receiving a wireless data packet.

This functionality is implemented in both the mouse_mode.c and keyboard_mode.c

routines which are both included on the attached CD (see Appendix G).

5.3.6 Mouse-Mode

The purpose of mouse-mode and the device’s intended usage is explained in section

3.2.3 Operating in Mouse-Mode. From a firmware perspective, the microcontroller is

required to continuously check the input data value representing the transmitter button

states. If any of the buttons are pressed, the relevant functions are initiated.

The flowchart on the following page provides a visual representation of the functional

execution whilst operating in mouse-mode:

5 Receiver-Unit Jadon Clews

74

Send to PC via USB Values for
Mouse Button 1, 2, 3

Mouse ∆X, ∆Y

M
o

u
se

-M
o

d
e

L
o

o
p

Mouse Button 3 = On

Enter Mouse-Mode from Main Loop

Button A Pressed? Y N

Button B Pressed? Y N

Button C Pressed? Y N

Button D Pressed? Y N

Button E Pressed? Y N

Mouse Button 1 = On

Mouse Button 2 = On

Mouse ∆X from Tilt
Mouse ∆Y from Tilt

Mouse Button 1 = Off
Mouse Button 2 = Off
Mouse Button 3 = Off

Mouse ∆X = 0
Mouse ∆Y = 0

Exit Mouse-Mode to Main Loop

Figure 5-9: Main Mouse-Mode Loop Flowchart Representation

5 Receiver-Unit Jadon Clews

75

The ∆X and ∆Y values represent the number of pixels by which the mouse-cursor

should move on-screen along the X and Y axis. The direction of this movement is

determined by the current tilt-orientation sector of the transmitter-unit. The sector value

(1 to 9) is determined by the function Poll_Sector() as explained previously in section

5.3.4 Determining Tilt-Sector. The magnitude by which the cursor will move in the

relevant direction varies. When button-E is first pressed, the magnitude is very small (a

single pixel) allowing the user to “fine-tune” the precise cursor position. After a

number of iterations and provided button-E is still depressed, the magnitude will

increase to a moderate amount (5 pixels) thus increasing the speed by which the cursor

is relocated. The magnitude will increase again to a maximum displacement value (10

pixels) provided button-E is held for enough iterations of the mouse-mode loop. The

variances in displacement magnitude of the cursor position allow for quick relocation

across large on-screen distances without the user losing the ability to control the precise

position of the cursor.

The code relevant to mouse-mode is located in the file mouse_mode.c which is included

on the CD (see Appendix G).

5.3.7 Keyboard-Mode

The purpose of keyboard-mode and the device’s intended usage is explained in section

3.2.4 Operating in Keyboard-Mode. From a firmware perspective, the microcontroller

is required to continuously check the input data value representing the transmitter

button states. If any of the buttons are pressed, the relevant functions are initiated.

The flowchart on the following page provides a visual representation of the functional

execution whilst operating in keyboard-mode:

5 Receiver-Unit Jadon Clews

76

K
ey

b
o

ar
d

-M
o

d
e

L
o

o
p

Send “Caps Lock” to PC

Enter Keyboard-Mode from Main Loop

Button A Pressed? Y N

Button B Pressed? Y N

Button C Pressed? Y N

Button D Pressed? Y N

Button E Pressed? Y N

Send “Backspace” to PC

Send “Enter” to PC

Check Tilt-Sector,
Send First Character for Sector,

Start Timer

Exit Keyboard-Mode to Main Loop

Reset Timer,
Cycle to Next Character

Time Elapsed? N Y

Button E Again? N Y

T
y

p
in

g
 L

o
o

p

Figure 5-10: Main Keyboard-Mode Loop Flowchart Representation

5 Receiver-Unit Jadon Clews

77

Pressing button-E redirects the code execution into the typing loop which cycles the

character typed on-screen through a sub-set of the total alphanumerical character-set.

The sub-set depends on the tilt-orientation of the device when button-E is first pressed.

Figure 3-11 in section 3.2.4 Operating in Keyboard-Mode defines the character sub-set

that corresponds to each tilt-sector.

The code relevant to keyboard-mode is located in the file keyboard_mode.c which can

be found on the accompanying CD (see Appendix G).

6 Conclusions Jadon Clews

78

6 Conclusions

Overall the project was deemed a success. All of the primary and secondary objectives

(defined in section 1.1 Project Objectives) were satisfactorily achieved.

The following sections cover the main problems which arose during the progression of

the project, as well as the limitations inherent in the design and some improvements that

could be made to the system.

6.1 Unanticipated Problems

There were two problems which arose that caused significant set-backs in the project

progress. Although overcome, had these problems been anticipated, a different system

design may have been utilised. The problems are described in the following two

sections.

6.1.1 Assembling Transmitter Components within a Small Enclosure

A small enclosure was necessary for the transmitter-unit to be hand-held (as per

objective P2). A relatively large amount of time was required to determine an ideal

location and orientation of each component so as to ensure they all fit within the chosen

enclosure. Two design changes should have been implemented to prevent this problem

and likely reduce the required construction time:

1. Smaller Power/Battery Module – Together, the power-module and batteries required

by far the most amount of room within the transmitter-unit enclosure. A different

power-module with a smaller footprint should have been utilised. Additionally, a

more suitable battery (such as the kind used in modern mobile telephones) should

replace the pair of AA cells utilised in the final design.

2. Custom Printed Circuit Board/s – Designing a custom circuit board or boards on

which the microcontroller, transmitter-module, accelerometer and miscellaneous

components could be mounted would have enabled the components to be fitted

closer together. The stripboard used, although easy to work with, is not capable of

minimising the surface area required by inter-connecting conductive tracks like a

custom PCB design could.

6 Conclusions Jadon Clews

79

6.1.2 Combining Keyboard and Mouse Functionality into a Single Device

The company behind the USB driver utilised for this project also provide access to a

number of example projects. Some of the available projects utilise the driver to emulate

keyboard keystrokes and others emulate mouse control. There was however very little

information or examples regarding the implementation of a device which could combine

both mouse and keyboard control. Doing so proved to be a time consuming process

which required a deeper understanding of how the USB driver operated. Before

successfully combining mouse and keyboard functionality into a single device, two

alternative solutions were considered but rejected:

1. Implement a Second Microcontroller – Programming one microcontroller with the

USB driver to act as a mouse-like device and programming the second to act as a

keyboard-like device would have been simpler. The two sub-systems could

communicate via one of the microcontroller’s inherent serial protocols. Both

microcontrollers would then be connected to separate USB ports on the PC and the

system would actually be recognised as two separate devices. This configuration is

obviously less than ideal and was thus rejected.

2. Switch to a Microcontroller with Hardware USB – The possibility of utilising a

microcontroller that incorporated a hardware implementation of the USB protocol

(as described in section 2.3.1 USB Protocol) was revisited as this would reduce the

firmware requirements and complexity. This option was again rejected due to the

difficulty in obtaining such a microcontroller at reasonable price.

Ultimately the problem was overcome and although it could have been avoided,

perseverance paid off as the deeper understanding of the USB driver proved to be

advantageous in subsequent stages of the project. However, the effect on the project

progress schedule could have been reduced by developing a deeper understanding of the

USB driver prior to attempting to implement it.

6 Conclusions Jadon Clews

80

6.2 Project Limitations

There are a few notable limitations inherent in the complete system. Although not

detrimental to the performance, overcoming these limitations would be advantageous:

6.2.1 Typing Speed

The rate at which text can be entered increases with practise much like a regular

keyboard. However, compared to a regular keyboard, the maximum possible typing

speed is very low, making the system suitable only for typing relatively small stings of

text.

As stated previously (section 3.2.4 Operating in Keyboard-Mode), the tilt-sector

designation of character sets was designed to be similar to the layout of a mobile-phone

keypad. This was intended to minimise the time required to learn how to type with the

device (objective P4) as the keypad format is already familiar to most people.

It is likely that an altered typing method could allow faster text entry. A different

combination of tilt angles and button presses could allow faster character selection,

however it is likely that such a design would require a significantly larger learning

period for the user.

6.2.2 Battery Life

Although a battery life of 2.5 hours was deemed adequate to meet the relevant objective

(S3) many wireless mouse and keyboard devices available today are capable of running

for a significantly longer duration (typically days or even months). A number of

possible alterations to the design would increase the battery life of the transmitter-unit:

1. On/Off Switch – By simply implementing a power switch in-line with the supply

source, a user could completely deactivate the unit when it is not being used. This

option was actually considered in early designs but was rejected as it would slightly

decrease the ease of use of the system by the user and a switch would also

negatively affect the transmitter-unit’s aesthetic.

2. Incorporate Microcontroller Power-Saving Functionality – The ATmega8

microcontroller used in the transmitter-unit has five different sleep-modes which can

6 Conclusions Jadon Clews

81

be incorporated into the firmware programming. None of these modes were

included in the final design. Extra programming could detect when the transmitter

is not in use and activate a sleep-mode to further reduce power consumption.

3. Modified Circuit Design – The receiver system only sends USB data when a button

is pressed on the transmitter. A modified circuit design could cause the transmitter-

unit to be powered only when one of the buttons is pressed. In addition to setting

the state of the connected microcontroller, a button-press could be designed to

actually provide power to the device, thus power is only drawn when one or more

buttons are actually being manipulated. This design is similar to many car-alarm

remote controls where the unit is only powered when one of the buttons

(arm/disarm, boot-open etc.) is pressed. Implementing this option would be the

most ideal for reducing power-drain, however testing would be required to ensure

the response time is not significantly reduced due to the required initialisation time

of the different hardware devices (USART, accelerometer etc) whenever a button is

pressed.

6.2.3 RF Noise

The transmitter-unit constantly outputs a wireless data stream. This RF signal could

possibly cause interference with other devices utilising a similar RF frequency. The

options listed in the previous section (6.2.2 Battery Life) which are intended to improve

the battery life of the unit would also have the added advantage of preventing the unit

from transmitting except when it is actually being used, thus reducing the RF output.

A further reduction in RF “noise” could be achieved by modifying the transmitter-unit’s

firmware. As stated, the unit currently outputs a continuous stream of data packets.

The firmware could be modified to simply output a data packet “pulse” whenever the

state of a button changes. The exception to this would be when button D is held during

mouse-mode, as this requires a constant stream of accelerometer output data in order to

continuously control the motion of the mouse cursor.

6 Conclusions Jadon Clews

82

Figure 6-1: Improved Tilt-Sector Designations

6.2.4 Cursor Positioning

As explained in section 3.2.3 Operating in Mouse-Mode, the direction of movement of

the on-screen cursor corresponds to the transmitter-unit’s tilt-sector. With only nine

possible sectors, cursor motion is limited to eight possible directions, each 45 degrees

apart.

Additional data-processing code implemented in the receiver-unit’s function

Poll_Sector() (see section 5.3.4 Determining Tilt-Sector) could provide a larger range of

detected tilt-sectors. For example, tilt-sectors represented in a 5x5 grid could provide

cursor speed and angle control as indicated by the following diagram:

The blue arrows represent fine cursor control (low speed) while more extreme tilting of

the transmitter-unit would result in faster motion at angles indicated by the red arrows.

As mentioned, implementing this extra functionality would require additional code for

the receiver-unit’s firmware. Additionally, it may also require alterations to the

transmitter-unit’s firmware in order to obtain higher resolution output values from the

accelerometer (see section 4.3.2 ADC (Analogue to Digital Converter)). This may be

necessary to accurately define output accelerometer ranges for each sector.

1 2

7

3 5 4

9 8 6 10

13 11 14 12 15

17 16 20 18 19

21 23 22 24 25

6 Conclusions Jadon Clews

83

6.3 Possible Improvements

A number of improvements could be made to the system in order to provide added

functionality. Some proposed system upgrades follow.

6.3.1 Software Support

Although one of the objectives (S7) specified that no additional software should be

required for the system to function, creating optional software to work with the device

could provide the user with additional functionality. Some examples of software

capability include:

1. On-screen display of the tilt-orientation sector, thus eliminating the need for the

external 3x3 LED-grid unit.

2. Customisable button assignments (e.g. switch left and right mouse click buttons).

3. The ability to re-calibrate the device to match an individual’s preferences (i.e. the

motion range which defines tilt-sectors).

4. The ability to store different calibration settings and button assignments for multiple

users or environments (e.g. sitting at a desk or standing in a lecture theatre).

6.3.2 Receiver-Unit Miniaturisation

The receiver-unit is relatively bulky which is ideal for the prototyping phase. However

a smaller footprint is always preferable with regards to wireless receiver-units as a

smaller device requires less space on the user’s desk. By designing and implementing a

custom PCB layout combined with smaller (possibly surface-mount) components, the

size of the receiver-unit could be greatly reduced.

6.3.3 Caps Lock Indicator

The device gives the user the ability to toggle the PC’s caps lock status. An additional

LED configured to indicate the current status of the caps lock would be ideal to prevent

accidentally typing in the wrong case.

6 Conclusions Jadon Clews

84

6.3.4 Docking Station

The final design includes a transmitter-unit which can be recharged by attaching it to a

mains-connected DC power supply. A more ideal solution would involve a docking

station which could rest permanently on a desk. Whenever not in use, the device could

be simply placed onto the docking station which will facilitate charging of the

transmitter’s batteries.

Additionally the receiver-unit’s internal electronics (including connectors and indicator

LEDs) could be installed within the docking station to reduce the number of system

units. This would provide the designer two power options whereby:

1. The docking station is connected to the PC via a USB cable for data

communications only. Power for both the receiver electronics and recharging the

transmitter is provided by a mains-connected power supply. This option would be

simpler to implement and provide the system with more than enough power.

2. The docking station is connected to the PC via a USB cable for both data

communications as well as power. The 5 volts available from a USB port could

power the receiver-unit when the system is in use and then be redirected to recharge

the transmitter when it is in the docking station. This option would be more ideal

but significantly more complex to implement.

7 References Jadon Clews

85

7 References

1. Dean Camera, 2007, ‘Newbie’s Guide to AVR Timers’, in AVR Freaks, accessed 25

March 2008, from

<http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=50106>

2. Dean Camera, 2007, ‘Using the USART – Serial Communications’, in AVR Freaks,

accessed 25 March 2008, from

<http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=45341>

3. Dean Camera, 2007, ‘Interrupt driven USARTs’ in AVR Freaks, accessed 25 March

2008, from

<http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=48188>

4. Ken Worster, 2007, ‘Newbie’s Guide to the AVR ADC’, in AVR Freaks, accessed

25 March 2008, from

<http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=56429>

5. Anonymous, 2007, ‘Accelerometers’, in RotoView, accessed 29 July 2008, from

<http://www.rotoview.com/accelerometer.htm>

6. Anonymous, 2008, ‘Accelerometers’, in Hitachi Metals America, Ltd., accessed 29

July 2008, from

<http://www.hitachimetals.com/product/sensors/accelerometer/h30CD_acceleromet

er.cfm>

7. Anonymous, 2001, ‘HID Usage Tables1.12’, in USB Implementers’ Forum,

accessed 14 March 2008, from

<http://www.usb.org/developers/hidpage#HID_Usage>

8. Anonymous, 2001, ‘Device Class Definition for HID 1.11’, in USB Implementers’

Forum, accessed 14 March 2008, from

<http://www.usb.org/developers/hidpage#HID_Usage>

9. Anonymous, 2007, ‘HIDKeys – An Example USB HID’, in Objective Development,

accessed 29 March 2008, from

<http://www.obdev.at/products/avrusb/hidkeys.html>

10. Anonymous, 2007, ‘EasyLogger’, in Objective Development, accessed 29 March

2008, from < http://www.obdev.at/products/avrusb/easylogger.html>

7 References Jadon Clews

86

11. Mikkel Holm Olsen, 2007, ‘C64 USB Keyboard’, in Symlink, accessed 29 March

2008, from <http://symlink.dk/projects/c64key/>

12. Mikkel Holm Olsen, 2007, ‘SpiffChorder’, in Symlink, accessed 29 March 2008,

from < http://symlink.dk/projects/spiffchorder/>

13. Alex Badea, 2007, ‘InfraHID’ in Vamposdecampos, accessed 29 March 2008, from

< http://vamposdecampos.googlepages.com/infrahid.html>

14. Jan Axelson 1999, USB Complete, Lakeview Research, Madison, WI 53704.

15. Deitel, Paul & Deitel, Harvey 2007, C How to Program Fifth Edition, Pearson

Prentice Hall, Upper Saddle River, NJ.

16. Jeri R. Hanly & Elliot B. Koffman, C Program Design for Engineers Second

Edition, Addison Wesley, USA.

Appendix A – Objective Development USB Driver Information Jadon Clews

87

Appendix A – Objective Development USB Driver Information

The USB driver utilised for this project is called AVR-USB and was developed by a

company named Objective Development. Their website can be found at

http://www.obdev.at/index.html.

Extracted from the product description page at the Objective Development website:

“AVR-USB is a software-only implementation of a low-speed USB device for Atmel’s

AVR microcontrollers”

The driver is freely available for use under the terms of the GNU General Public

License Version 2 (GPL). In addition to the terms and conditions of the GPL, Objective

Development also strongly recommends that users of the driver do the following (also

extracted from their website):

1. Publish your entire project on a website and drop us a note with the URL. Use the

Feedback Form for your submission. If you don't have a web site to publish your

project, we can host it in our Wiki.

2. Adhere to minimum publication standards. Please include at least:

• a circuit diagram in PDF, PNG or GIF format

• full source code for the host software

• a Readme.txt file in ASCII format which describes the purpose of the project

and what can be found in which directories and which files

• a reference to our website at http://www.obdev.at/avrusb/

3. If you improve the driver firmware itself, please give us a free license to your

modifications for our commercial license offerings.

Appendix A – Objective Development USB Driver Information Jadon Clews

88

Additionally, the developers require that the device and vendor names identified by the

connected USB device adhere to the following rules:

1. The USB device MUST provide a textual representation of the manufacturer and

product identification. The manufacturer identification MUST be available at least

in USB language 0x0409 (English/US).

2. The textual manufacturer identification MUST contain either an Internet domain

name (e.g. "mycompany.com") registered and owned by you, or an e-mail address

under your control (e.g. "myname@gmx.net"). You can embed the domain name or

e-mail address in any string you like, e.g. "Objective Development

http://www.obdev.at/avrusb/".

Text documents (License.txt and USBID-License.txt) containing the detailed licensing

information are stored with the driver firmware and are included on the CD

accompanying this document (see Appendix G).

Appendix B – Transmitter-Unit Circuit Diagram and Component List Jadon Clews

89

Appendix B – Transmitter-Unit Circuit Diagram and Component List

F
ig

u
re

 B
-1

:
T

ra
n

sm
it

te
r-

U
n

it
 C

ir
cu

it
 D

ia
g

ra
m

Appendix B – Transmitter-Unit Circuit Diagram and Component List Jadon Clews

90

Label Component

433TX 433.92 MHz Transmitter-Module

78L05 78l05, Low Power, +5V Voltage Regulator

ADXL330 ADXL330 3-Axis, ±3g, Accelerometer

ATMEGA8 AVR ATmega8 Microcontroller

C1 27pF Ceramic Capacitor

C2 27pF Ceramic Capacitor

C3 0.1 F SMD Capacitor

C4 0.1 F SMD Capacitor

C5 0.1 F SMD Capacitor

CON1 6-Pin, In-Line Female Connector

CON2 6-Pin, In-Line Male Connector

D1 1N4148 Diode

D2 1N4148 Diode

DC-DC 3-9V DC-DC Converter Module

ISP 10-Pin Male IDC Socket

JACK 2.1mm Male DC Power Socket

Q1 12.0MHz Crystal

R1 100 Resistor

A 12mm, PCB-Mount, Tactile Push-Button

B 12mm, PCB-Mount, Tactile Push-Button

C 12mm, PCB-Mount, Tactile Push-Button

D 12mm, PCB-Mount, Tactile Push-Button

E 12mm, PCB-Mount, Tactile Push-Button

Table B-1: Transmitter-Unit Component List

Appendix C – Receiver-Unit Circuit Diagram and Component List Jadon Clews

91

Appendix C – Receiver-Unit Circuit Diagram and Component List

F
ig

u
re

 C
-1

:
R

ec
ei

v
er

-U
n

it
 C

ir
cu

it
 D

ia
g

ra
m

Appendix C – Receiver-Unit Circuit Diagram and Component List Jadon Clews

92

Label Component

433RX 433.92 MHz Receiver-Module

ATMEGA8 AVR ATmega8 Microcontroller

C1 10 F Electrolytic Capacitor

C2 27pF Ceramic Capacitor

C3 27pF Ceramic Capacitor

CON1 10-Pin Male IDC Socket

CON2 10-Pin Male IDC Socket

D1 1N4148 Diode

D2 1N4148 Diode

ISP 10-Pin Male IDC Socket

JP1 4-Pin, In-Line Male Connector

JP2 4-Pin, In-Line Female Connector

LED10(B) 5mm RGB LED Blue Connection

LED11(G) 5mm RGB LED Green Connection

LED12(R) 5mm RGB LED Red Connection

LED1-9 5mm Blue LEDs

Q1 12.0MHz Crystal

R1 68 Resistor

R2 68 Resistor

R3 1.5k Resistor

R4 1k Resistor

R5 100 Resistor

R6 180 Resistor

R7 100 Resistor

R8 100 Resistor

R9 100 Resistor

USB Standard-B Female USB Socket

Table C-1: Receiver-Unit Component List

Appendix D – Main Component Details Jadon Clews

93

Appendix D – Main Component Details

Component Manufacturer

Supplier

Unit

Cost

Extended

Cost

ATmega8 Microcontroller Atmel Jaycar $19.95 2 $39.90

ADXL330 Accelerometer Analog

Devices

Ocean

Controls

$45.00 1 $45.00

433.92MHz Transmitter - Jaycar $9.95 1 $9.95

433.92MHz Receiver - Jaycar $9.95 1 $9.95

12mm Tactile Push Button - Altronics $0.90 5 $4.50

5mm LED Bright LED

Electronics

Corp

Altronics $3.80 9 $34.20

5mm RGB LED Bright LED

Electronics

Corp

Altronics $5.20 1 $5.20

160mm Whip Antenna Centurion RS-Online $12.40 1 $12.40

Aluminium Enclosure Hammond

Manufacturing

Altronics $33.50 1 $33.50

Miscellaneous (Passives,

wiring, connectors, etc)

- Altronics/

Jaycar

~$40.00 1 $40.00

 Total Cost: $234.60

Table D-1: Main Component Manufacturers, Supplies and Cost

Supplier Website

Altronics http://www.altronics.com.au/

Jaycar http://www.jaycar.com.au/index.asp

Ocean Controls http://www.oceancontrols.com.au/

RS-Online http://australia.rs-online.com/web/home.html

Table D-2: Component Supplier Websites

Appendix E – Serial Line Level Conversion Module Jadon Clews

94

Figure E-1: Serial Line Level Converter Circuit Diagram

Appendix E – Serial Line Level Conversion Module

Following is data pertaining to the TTL-RS-232 serial line level converter which was

created for this project to provide a simple means of debugging firmware.

Label Component

C1 10 F, 16V, Electrolytic Capacitor

C2 10 F, 16V, Electrolytic Capacitor

C3 10 F, 16V, Electrolytic Capacitor

C4 10 F, 16V, Electrolytic Capacitor

C5 0.1 F Ceramic Capacitor

JP1 Microcontroller TX Connector

JP2 Microcontroller RX Connector

MAX232 MAX232 TTL-RS-232 Converter IC

X1 DB9, 9-Pin PC Serial Port Connector

Table E-1: Serial Line Level Conversion Unit Component List

Appendix F – 10-Pin IDC Connector Pin Identification Jadon Clews

95

Figure F-1: 10-Pin IDC Connector Pin Numbers

Appendix F – 10-Pin IDC Connector Pin Identification

Mounted on the main receiver-unit are three externally-accessible, 10-pin, male, IDC

sockets. The following data identifies the purpose of the pins in each connector.

Pin CON-1

(ISP)

CON-2

(Data I/O for LED-Grid)

CON-3

(Serial RX/TX)

1 MOSI PB0 VCC

2 VCC PB5 GND

3 N/C PB1 TX

4 GND PC0 RX

5 Inverted Reset PB2 N/C

6 GND PC1 N/C

7 SCK PB3 N/C

8 GND PC2 N/C

9 MISO PB4 N/C

10 GND GND N/C

Table F-1: 10-Pin IDC Connection Pin Assignments

9 7 5 3 1 9 7 5 3 1 9 7 5 3 1

10 8 6 4 2 10 8 6 4 2 10 8 6 4 2

CON-1 CON-2 CON-3

Appendix G – Attached CD Contents Jadon Clews

96

Appendix G – Attached CD Contents

Included on the CD attached to this document are a number of directories. The names

of each directory and its contents are listed in the following table:

Directory Contents

Datasheets The datasheets for the main electronic components used in the

complete system can be found here in PDF format. Datasheets exist

for the microcontrollers, the TX module, the RX module, the DC-DC

converter module and the accelerometer.

Documentation This report in Microsoft Word document format is located under this

directory. Additionally, the subdirectory “Images” contains the

modified image files used within the document.

Firmware This directory contains all of the c-code utilised in the final system.

Subdirectory “RX” contains the code for the receiver-unit’s

microcontroller and subdirectory “TX” contains the code for the

transmitter-unit’s microcontroller. Note the USB driver and its

licensing information (see Appendix A) is located within the directory

“usbdrv” which is under the RX subdirectory.

Photos Photos of the completed transmitter and receiver hardware units can

be viewed under this directory.

Reference

Projects

A number of existing projects provided example firmware and

hardware configurations that assisted in the progression of this project.

These projects (including firmware and schematics) are located within

this directory.

Schematics The circuit diagrams used in this document were exported from

schematics created using the free CadSoft Eagle software package

(www.cadsoft.de/). The schematic files are located within this

directory.

HID Data HID Documents as per section 2.3.2 HID-Class.

Table G-1: CD Directory Content

